Zsuzsanna Bugyi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9115533/publications.pdf

Version: 2024-02-01

623188 752256 22 877 14 20 citations g-index h-index papers 23 23 23 788 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gluten and wheat sensitivities – An overview. Journal of Cereal Science, 2016, 67, 2-11.	1.8	160
2	Are current analytical methods suitable to verify VITAL® 2.0/3.0 allergen reference doses for EU allergens in foods?. Food and Chemical Toxicology, 2020, 145, 111709.	1.8	83
3	Correlation of Quality Parameters with the Baking Performance of Wheat Flours. Cereal Chemistry, 2014, 91, 333-341.	1.1	82
4	Quantitation of the immunodominant 33-mer peptide from \hat{l}_{\pm} -gliadin in wheat flours by liquid chromatography tandem mass spectrometry. Scientific Reports, 2017, 7, 45092.	1.6	82
5	Is the calculation of the gluten content by multiplying the prolamin content by a factor of 2 valid?. European Food Research and Technology, 2009, 229, 9-13.	1.6	77
6	Variation in protein composition among wheat (Triticum aestivum L.) cultivars to identify cultivars suitable as reference material for wheat gluten analysis. Food Chemistry, 2018, 267, 387-394.	4.2	62
7	Targeted liquid chromatography tandem mass spectrometry to quantitate wheat gluten using well-defined reference proteins. PLoS ONE, 2018, 13, e0192804.	1.1	52
8	Classification of spelt cultivars based on differences in storage protein compositions from wheat. Food Chemistry, 2015, 168, 176-182.	4.2	41
9	A reassessment of the electrophoretic mobility of high molecular weight glutenin subunits of wheat. Journal of Cereal Science, 2012, 56, 726-732.	1.8	35
10	Comparative study of commercially available gluten ELISA kits using an incurred reference material. Quality Assurance and Safety of Crops and Foods, 2013, 5, 79-87.	1.8	34
11	Recent Progress and Recommendations on Celiac Disease From the Working Group on Prolamin Analysis and Toxicity. Frontiers in Nutrition, 2020, 7, 29.	1.6	34
12	Identification of the factors affecting the analytical results of food allergen ELISA methods. European Food Research and Technology, 2015, 241, 127-136.	1.6	29
13	Development of Incurred Reference Material for Improving Conditions of Gluten Quantification. Journal of AOAC INTERNATIONAL, 2012, 95, 382-387.	0.7	22
14	Isolation and Characterization of Highâ€Molecularâ€Weight (HMW) Gliadins from Wheat Flour. Cereal Chemistry, 2016, 93, 536-542.	1.1	19
15	Towards development of incurred materials for quality assurance purposes in the analysis of food allergens. Analytica Chimica Acta, 2010, 672, 25-29.	2.6	13
16	Investigation of incurred single- and multi-component model food matrices for determination of food proteins triggering allergy and coeliac disease. European Food Research and Technology, 2014, 239, 923-932.	1.6	13
17	Characterisation and comparison of selected wheat (Triticum aestivum L.) cultivars and their blends to develop a gluten reference material. Food Chemistry, 2020, 313, 126049.	4.2	13
18	Celiac disease-specific prolamin peptide content of wheat relatives and wild species determined by ELISA assays and bioinformatics analyses. Cereal Research Communications, 2015, 43, 133-143.	0.8	10

#	Article	IF	CITATIONS
19	Investigation of the effects of food processing and matrix components on the analytical results of ELISA using an incurred gliadin reference material candidate. Acta Alimentaria, 2015, 44, 390-399.	0.3	10
20	Further Steps Toward the Development of Gluten Reference Materials – Wheat Flours or Protein Isolates?. Frontiers in Plant Science, 2020, 11, 906.	1.7	6
21	Sustainability, Quality, and Health: The Past and Future of Cereal Science – A Report on the 5th Cereals&Europe Spring Meeting. Cereal Foods World, 2015, 60, 240-242.	0.7	O
22	Treatment of dietary wheat hypersensitivities., 2020,, 249-268.		0