
Yanzhang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9115445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of Cable Parallel Air-Core Coil Sensor to Reduce Motion-Induced Noise in Helicopter Transient Electromagnetic System. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 525-532.	4.7	24
2	A Fast Identification on the Spin-Exchange Relaxation-Free Regime of Atomic Magnetometer Exploiting Measurement on Gyromagnetic Ratio. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 1157-1164.	4.7	22
3	Reducing Motion-Induced Noise With Mechanically Resonant Coil Sensor in a Rigid Helicopter Transient Electromagnetic System. IEEE Transactions on Industrial Electronics, 2020, 67, 2391-2401.	7.9	20
4	Deep Learning and Machine Vision-Based Inspection of Rail Surface Defects. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-14.	4.7	17
5	Segmentation of Track Surface Defects Based on Machine Vision and Neural Networks. IEEE Sensors Journal, 2022, 22, 1571-1582.	4.7	14
6	Performance Degradation Effect Countermeasures in Residence Times Difference (RTD) Fluxgate Magnetic Sensors. IEEE Sensors Journal, 2019, 19, 11819-11827.	4.7	10
7	A Prototype of High-Precision Carbon Isotopic Ratio Sensing System for COâ,, Dissolved in Water. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 9813-9821.	4.7	8
8	Sensitivity and Resolution Enhancement of Coupled-Core Fluxgate Magnetometer by Negative Feedback. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 623-631.	4.7	7
9	Numerical Optimization of the Tube-Cored Induction Magnetometer Weight Under Specific Noise Constraints. IEEE Sensors Journal, 2017, 17, 3302-3308.	4.7	6
10	Sensitivity Model for Residence Times Difference Fluxgate Magnetometers Near Zero Magnetic Field. IEEE Sensors Journal, 2020, 20, 868-875.	4.7	6
11	A High-Accuracy CO ₂ Carbon Isotope Sensing System Using Subspace Identification of Hammerstein Model for Geochemical Application. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	4.7	6
12	Optical Design and Verification of Multipass Cell With Two Spherical Mirrors Using Space Equation Method. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	4.7	4
13	Optimized Design and Calibration of the Triaxis Induction Magnetometer with Crosstalk and Nonorthogonality Compensation. Journal of Sensors, 2016, 2016, 1-8.	1.1	2
14	Auto-Design of Multi-Pass Cell With Small Size and Long Optical Path Length Using Parallel Multi-Population Genetic Algorithm. IEEE Sensors Journal, 2022, 22, 6518-6527.	4.7	2
15	A Temperature Gradient Field Compensation Method to Improve the Accuracy of the CO ₂ Carbon Isotope Sensor. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	4.7	1
16	A High Dynamic Range and Ultralow-Noise Bipolar Current Source for Unshielded SERF Atomic Magnetometers. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	4.7	0
17	A Prototype of CH ₄ and CO ₂ Sensing System Using State Parameters Correction Applied to Gas Geochemical Exploration. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	4.7	0