
Kenichi Sakai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9114912/publications.pdf Version: 2024-02-01

KENICHI SAKAI

#	Article	IF	CITATIONS
1	Adsorption and micellization behavior of novel gluconamide-type gemini surfactants. Journal of Colloid and Interface Science, 2008, 318, 440-448.	9.4	85
2	Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances. Advances in Colloid and Interface Science, 2016, 231, 36-58.	14.7	74
3	Current perspective of sustainable surfactants based on renewable building blocks. Current Opinion in Colloid and Interface Science, 2020, 45, 124-135.	7.4	65
4	Effects of Water on Solvation Layers of Imidazolium-Type Room Temperature Ionic Liquids on Silica and Mica. Langmuir, 2015, 31, 6085-6091.	3.5	53
5	Synthesis and aqueous solution properties of novel anionic heterogemini surfactants containing a phosphate headgroup. Journal of Colloid and Interface Science, 2009, 338, 229-235.	9.4	50
6	Adsorption Characteristics of Spiropyran-Modified Cationic Surfactants at the Silica/Aqueous Solution Interface. Langmuir, 2010, 26, 9283-9288.	3.5	47
7	Sustainable oleic and stearic acid based biodegradable surfactants. RSC Advances, 2017, 7, 10433-10442.	3.6	46
8	Photo-isomerization of spiropyran-modified cationic surfactants. Journal of Colloid and Interface Science, 2007, 316, 1027-1030.	9.4	44
9	Characterizing the pH-Responsive Behavior of Thin Films of Diblock Copolymer Micelles at the Silica/Aqueous Solution Interface. Langmuir, 2006, 22, 8435-8442.	3.5	42
10	Wormlike Micelle Formation by Acylglutamic Acid with Alkylamines. Langmuir, 2012, 28, 17617-17622.	3.5	42
11	Recent Advances in Gemini Surfactants: Oleic Acid-Based Gemini Surfactants and Polymerizable Gemini Surfactants. Journal of Oleo Science, 2011, 60, 159-163.	1.4	41
12	Peptide-Based Gemini Amphiphiles: Phase Behavior and Rheology of Wormlike Micelles. Langmuir, 2012, 28, 15472-15481.	3.5	39
13	pH-Responsive Diblock Copolymer Micelles at the Silica/Aqueous Solution Interface:Â Adsorption Kinetics and Equilibrium Studies. Journal of Physical Chemistry B, 2006, 110, 14744-14753.	2.6	37
14	Comparison of the Adsorption of Cationic Diblock Copolymer Micelles from Aqueous Solution onto Mica and Silica. Langmuir, 2006, 22, 5328-5333.	3.5	36
15	Photochemical Control of Molecular Assembly Formation in a Catanionic Surfactant System. Langmuir, 2011, 27, 1610-1617.	3.5	36
16	Rheological Properties of Polyoxyethylene Cholesteryl Ether Wormlike Micelles in Aqueous System. Journal of Physical Chemistry B, 2011, 115, 2937-2946.	2.6	35
17	Self-aggregation properties of new ester-based gemini surfactants and their rheological behavior in the presence of cosurfactant — monolaurin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 461, 258-266.	4.7	35
18	Characterization of Layer-by-Layer Self-Assembled Multilayer Films of Diblock Copolymer Micelles. Langmuir, 2008, 24, 116-123.	3.5	33

KENICHI SAKAI

#	Article	IF	CITATIONS
19	Structure and Dynamics of Poly(oxyethylene) Cholesteryl Ether Wormlike Micelles: Rheometry, SAXS, and Cryo-TEM Studies. Langmuir, 2011, 27, 12877-12883.	3.5	33
20	Phytosterol Ethoxylates in Room-Temperature Ionic Liquids: Excellent Interfacial Properties and Gel Formation. Langmuir, 2009, 25, 2601-2603.	3.5	31
21	Adsorption Characteristics of Monomeric/Gemini Surfactant Mixtures at the Silica/Aqueous Solution Interface. Langmuir, 2010, 26, 17119-17125.	3.5	30
22	Photorheological Response of Aqueous Wormlike Micelles with Photocleavable Surfactant. Langmuir, 2013, 29, 5668-5676.	3.5	29
23	Microflow reactor synthesis of palladium nanoparticles stabilized with poly(benzyl ether) dendron ligands. Journal of Nanoparticle Research, 2010, 12, 951-960.	1.9	27
24	α-Gel Formation by Amino Acid-Based Gemini Surfactants. Langmuir, 2014, 30, 7654-7659.	3.5	27
25	Micelle Structure in a Photoresponsive Surfactant with and without Solubilized Ethylbenzene from Small-Angle Neutron Scattering. Journal of Physical Chemistry B, 2015, 119, 5904-5910.	2.6	27
26	Photochemical Control of Viscosity Using Sodium Cinnamate as a Photoswitchable Molecule. Chemistry Letters, 2012, 41, 247-248.	1.3	26
27	Synthesis and dilute aqueous solution properties of ester functionalized cationic gemini surfactants having different ethylene oxide units as spacer. Colloid and Polymer Science, 2014, 292, 1685-1692.	2.1	26
28	Oleic Acid-Based Gemini Surfactants with Carboxylic Acid Headgroups. Journal of Oleo Science, 2011, 60, 411-417.	1.4	24
29	Synthesis of surface-active N-heterocyclic carbene ligand and its Pd-catalyzed aqueous Mizoroki–Heck reaction. Tetrahedron, 2016, 72, 4117-4122.	1.9	23
30	pH-responsive behavior of selectively quaternized diblock copolymers adsorbed at the silica/aqueous solution interface. Journal of Colloid and Interface Science, 2007, 314, 381-388.	9.4	22
31	Polymerized assemblies of cationic gemini surfactants in aqueous solution. Journal of Colloid and Interface Science, 2009, 330, 250-253.	9.4	22
32	Fluorocarbon–hydrocarbon gemini surfactant mixtures in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 333, 26-31.	4.7	21
33	Surface characterization of nanoparticles carrying pH-responsive polymer hair. Polymer, 2010, 51, 6240-6247.	3.8	21
34	Catanionic Mixtures Forming Gemini-like Amphiphiles. Journal of Oleo Science, 2011, 60, 549-555.	1.4	21
35	Equilibrium Surface Tension, Dynamic Surface Tension, and Micellization Properties of Lactobionamide-Type Sugar-Based Gemini Surfactants. Journal of Oleo Science, 2013, 62, 353-362.	1.4	21
36	A cinnamic acid-type photo-cleavable surfactant. Journal of Colloid and Interface Science, 2012, 376, 160-164.	9.4	19

KENICHI SAKAI

#	Article	IF	CITATIONS
37	Adsorption characteristics of sugar-based monomeric and gemini surfactants at the silica/aqueous solution interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 328, 100-106.	4.7	18
38	Active Interfacial Modifier: Stabilization Mechanism of Water in Silicone Oil Emulsions by Peptideâ^'Silicone Hybrid Polymers. Langmuir, 2010, 26, 5349-5354.	3.5	18
39	Adsorption characteristics of zwitterionic diblock copolymers at the silica/aqueous solution interface. Journal of Colloid and Interface Science, 2008, 317, 383-394.	9.4	17
40	Characterizing the structural transition of cationic DPPC liposomes from the approach of TEM, SAXS and AFM measurements. Colloids and Surfaces B: Biointerfaces, 2008, 67, 73-78.	5.0	17
41	Adsorption of Cationic Monomeric and Gemini Surfactants on Montmorillonite and Adsolubilization of Vitamin E. Journal of Oleo Science, 2008, 57, 423-429.	1.4	17
42	Sulfonic-Hydroxyl-Type Heterogemini Surfactants Synthesized from Unsaturated Fatty Acids. Journal of Oleo Science, 2010, 59, 541-548.	1.4	17
43	Photoinduced Increase in Surfactant Solution Viscosity Using Azobenzene Dicarboxylate for Molecular Switching. Journal of Oleo Science, 2011, 60, 203-207.	1.4	17
44	Direct Force Measurements between Adlayers Consisting of Poly(amidoamine) Dendrimers with Primary Amino Groups or Quaternary Ammonium Groups. Journal of Colloid and Interface Science, 2002, 254, 406-409.	9.4	16
45	Synthesis and aqueous solution properties of PAMAM dendron surfactants bearing a quaternary ammonium focal group and sugar terminal groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 326, 184-190.	4.7	16
46	Nonionic Surfactant Mixtures in an Imidazolium-Type Room-Temperature Ionic Liquid. Journal of Oleo Science, 2011, 60, 563-567.	1.4	16
47	Self-Aggregation and Liquid Crystalline Behavior of New Ester-Functionalized Quinuclidinolium Surfactants. Langmuir, 2014, 30, 9036-9044.	3.5	15
48	Effects of copolymer concentration and chain length on the pH-responsive behavior of diblock copolymer micellar films. Journal of Colloid and Interface Science, 2006, 303, 372-379.	9.4	14
49	Polymerizable gemini surfactants at solid/solution interfaces: Adsorption and polymerization on melamine formaldehyde particles and capsule fabrication. Journal of Colloid and Interface Science, 2010, 343, 491-495.	9.4	13
50	Effects of Spacer Chain Length of Amino Acid-Based Gemini Surfactants on Wormlike Micelle Formation. Journal of Oleo Science, 2014, 63, 249-255.	1.4	13
51	Physicochemical Evaluation of Micellar Solution and Lyotropic Phases Formed by Self-Assembled Aggregates of Morpholinium Geminis. ACS Omega, 2017, 2, 5324-5334.	3.5	13
52	Viscoelastic solution of long polyoxyethylene chain phytosterol/monoglyceride/water systems. Colloid and Polymer Science, 2010, 288, 405-414.	2.1	12
53	Adsorption of Phytosterol Ethoxylates on Silica in an Aprotic Room-Temperature Ionic Liquid. Langmuir, 2011, 27, 3244-3248.	3.5	12
54	Adsolubilization by a photo-responsive surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 410, 119-124.	4.7	12

#	Article	IF	CITATIONS
55	Key Process and Factors Controlling the Direct Translocation of Cell-Penetrating Peptide through Bio-Membrane. International Journal of Molecular Sciences, 2020, 21, 5466.	4.1	12
56	Polymerizable Anionic Gemini Surfactants: Physicochemical Properties in Aqueous Solution and Polymerization Behavior. Journal of Oleo Science, 2009, 58, 403-413.	1.4	11
57	Quaternary Ammonium-Type Gemini Surfactants Synthesized from Oleic Acid: Aqueous Solution Properties and Adsorption Characteristics. Journal of Oleo Science, 2013, 62, 489-498.	1.4	11
58	Physicochemical Properties of Oleic Acid-Based Partially Fluorinated Gemini Surfactants. Journal of Oleo Science, 2014, 63, 257-267.	1.4	11
59	Phosphatidylcholine-based nonaqueous photorheological fluids: effect of geometry and solvent. Colloid and Polymer Science, 2014, 292, 1599-1609.	2.1	11
60	Effects of sodium Î ² -sitosteryl sulfate on the phase behavior of dipalmitoylphosphatidylcholine. Colloids and Surfaces B: Biointerfaces, 2018, 161, 59-66.	5.0	11
61	Preparation of polyurea capsules using electrocapillary emulsification. Colloids and Surfaces B: Biointerfaces, 2008, 66, 287-290.	5.0	10
62	Water-in-Oil Emulsions Prepared by Peptide-Silicone Hybrid Polymers as Active Interfacial Modifier: Effects of Silicone Oil Species on Dispersion Stability of Emulsions. Journal of Oleo Science, 2013, 62, 505-511.	1.4	10
63	Effect of inorganic and organic counterions on interfacial properties of oleic acid-based gemini surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 73-78.	4.7	10
64	Effects of Î ² -Sitosteryl Sulfate on the Properties of DPPC Liposomes. Journal of Oleo Science, 2018, 67, 1511-1519.	1.4	10
65	Phase Diagram of Monohexadecyl Phosphate Neutralized by L-Arginine: α-Gel Formation Ability. Journal of Oleo Science, 2018, 67, 851-857.	1.4	10
66	Self-assembling Properties of an <i>N</i> -Heterocyclic Carbene-based Metallosurfactant: Pd-Coordination Induced Formation of Reactive Interfaces in Water. Journal of Oleo Science, 2018, 67, 1107-1115.	1.4	10
67	Phase Behavior of the Bilayers Containing Hydrogenated Soy Lecithin and β-Sitosteryl Sulfate. Langmuir, 2020, 36, 6025-6032.	3.5	10
68	Phase Behavior of Phytosterol Ethoxylates in an Imidazolium-Type Room-Temperature Ionic Liquid. Journal of Oleo Science, 2012, 61, 135-141.	1.4	9
69	Anion–π interaction at the solid/water interfaces. Chemical Communications, 2021, 57, 4650-4653.	4.1	9
70	Characterization of aliphatic and aromatic polyester hyperbranched dendrimers by AFM imaging. Colloid and Polymer Science, 2005, 284, 74-79.	2.1	8
71	Photoinduced viscosity control of lecithin-based reverse wormlike micellar systems using azobenzene derivatives. RSC Advances, 2018, 8, 23742-23747.	3.6	8
72	Formation of α-gel (α-form hydrated crystal) by oleic acid-based gemini surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123944.	4.7	8

#	Article	IF	CITATIONS
73	Characterizing Water Behavior in α-Gel (α-Type Hydrated Crystal) Formed from Monohexadecyl Phosphate and L-Arginine. Journal of Oleo Science, 2019, 68, 225-231.	1.4	8
74	Phase Behavior and Polymerization of the Ternary Polymerizable Cationic Gemini Surfactant/Fatty Alcohol/Water System. Langmuir, 2020, 36, 986-990.	3.5	8
75	Structural Change of an α-Gel (α-Form Hydrated Crystal) Induced by Temperature and Shear Flow in an Oleic Acid Based Gemini Surfactant System. Langmuir, 2020, 36, 4695-4701.	3.5	8
76	Synthesis of an <i>N</i> -Heterocyclic Carbene-based Au(I) Coordinate Surfactant: Application for Alkyne Hydration Based on Au Nanoparticle Formation. Journal of Oleo Science, 2020, 69, 871-882.	1.4	8
77	Characterization of the micelle structure of oleic acid-based gemini surfactants: effect of stereochemistry. Physical Chemistry Chemical Physics, 2018, 20, 8874-8880.	2.8	7
78	Adsorption of Pluronic Surfactants in Alkylene Carbonates on Silica. Langmuir, 2018, 34, 14180-14185.	3.5	7
79	Accelerated recombination of lophyl radicals and control of the surface tension with amphiphilic lophine dimers. Chemical Communications, 2019, 55, 9769-9772.	4.1	7
80	Adsorption of Hydrophilic Amine-Based Protic Ionic Liquids on Iron-Based Substrates. Journal of Oleo Science, 2021, 70, 333-339.	1.4	7
81	Rapid controlled release by photo-irradiation using morphological changes in micelles formed by amphiphilic lophine dimers. Scientific Reports, 2021, 11, 10754.	3.3	7
82	Rheology of α-Gel Formed by Amino Acid-Based Surfactant with Long-Chain Alcohol: Effects of Inorganic Salt Concentration. Langmuir, 2021, 37, 7032-7038.	3.5	7
83	Removal of a Model Biofilm by Sophorolipid Solutions: A QCM-D Study. Journal of Oleo Science, 2022, 71, 663-670.	1.4	7
84	Real-time observation of solubilization-induced morphological change in surfactant aggregates adsorbed on a solid surface. Chemical Communications, 2017, 53, 13172-13175.	4.1	6
85	Surface Morphology of Cosmetic Film Consisting of PEG-Diisostearate Amphiphilic Random Copolymer, Xanthan Gum, and Solvents. Journal of Oleo Science, 2017, 66, 1239-1245.	1.4	6
86	Amino acid-type photo-cleavable surfactants: Controlled dispersion stability of silica particles and release of active ingredients. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 564, 108-114.	4.7	6
87	Phase Behavior of Ester Based Anionic Surfactants: Sodium Alkyl Sulfoacetates. Industrial & Engineering Chemistry Research, 2019, 58, 6235-6242.	3.7	6
88	Improving Foam Stability of Ethanol/Water Mixture with Anionic Surfactant and Long-chain Alcohol. Chemistry Letters, 2020, 49, 453-456.	1.3	6
89	Polyoxyethylene cholesteryl ether-based aqueous wormlike micelles. Colloid and Polymer Science, 2012, 290, 339-348.	2.1	5
90	Effect of Water on Interfacial Chemical Properties of Nonionic Surfactants in Hydrophobic Ionic Liquid bmimPF6. Journal of Oleo Science, 2013, 62, 363-370.	1.4	5

#	Article	IF	CITATIONS
91	Characterizing solid/ionic liquid interfaces in the presence of water and nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 433-439.	4.7	5
92	Accelerated Recombination of Lophyl Radicals Solubilized in Micelles. Chemistry Letters, 2018, 47, 113-115.	1.3	5
93	Effects of <i>β</i> -Sitosteryl Sulfate on the Hydration Behavior of Dipalmitoylphosphatidylcholine. Journal of Oleo Science, 2018, 67, 763-771.	1.4	5
94	Effects of <i>β</i> -Sitosteryl Sulfate on the Phase Behavior and Hydration Properties of Distearoylphosphatidylcholine: a Comparison with Dipalmitoylphosphatidylcholine. Journal of Oleo Science, 2018, 67, 433-443.	1.4	5
95	Small-angle Neutron Scattering Study of Micelle Structure and Hydration Behavior of Oleic Acid-based Gemini Surfactant. Chemistry Letters, 2019, 48, 1050-1053.	1.3	5
96	pH-sensitive Wormlike Micelle and Hydrogel Formation by Acylglutamic Acid–Alkylamine Complex. Chemistry Letters, 2016, 45, 655-657.	1.3	4
97	Characterization of O/W Emulsions Prepared by PEG-Diisostearate Amphiphilic Random Copolymer. Journal of Oleo Science, 2017, 66, 1121-1128.	1.4	4
98	Oil-in-Water Emulsions Stabilized by Acylglutamic Acid–Alkylamine Complexes as Noncovalent-Type Double-Chain Amphiphiles. Langmuir, 2018, 34, 268-272.	3.5	4
99	Accelerated Recombination of Lophyl Radicals with Self-Assembled Amphiphilic Lophine Dimer. Journal of Oleo Science, 2019, 68, 659-664.	1.4	4
100	Synthesis and properties of renewable citronellol based biodegradable anionic surfactant. Colloid and Polymer Science, 2020, 298, 1543-1550.	2.1	4
101	Au(<scp>i</scp>)-, Ag(<scp>i</scp>)-, and Pd(<scp>ii</scp>)-coordination-driven diverse self-assembly of an N-heterocyclic carbene-based amphiphile. RSC Advances, 2021, 11, 17865-17870.	3.6	4
102	Morphology of surfactant mixtures at solid/liquid interfaces: High-speed AFM observation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126297.	4.7	4
103	α-Gel (α-Form Hydrated Crystal) Prepared by Eco-Friendly Cationic Surfactant. Journal of Oleo Science, 2020, 69, 1403-1409.	1.4	4
104	Ternary phase behavior of phytosterol ethoxylate, water, and imidazolium-based ionic liquid systems – Lyotropic liquid crystal formation over a wide range of compositions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 472, 117-123.	4.7	3
105	Adsolubilization-induced structural change in adsorbed surfactant aggregates: Equilibrium and kinetics monitored by AFM and QCM-D. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 231-238.	4.7	3
106	Friction and Adsorption Properties of Oleic Acid-Based Gemini Amphiphile at Silica/Ester Oil Interfaces. Journal of Oleo Science, 2019, 68, 567-572.	1.4	3
107	Physicochemical Properties of Acylglutamic Acid-Alkylamine Complexes in Aqueous Media. Journal of Oleo Science, 2020, 69, 865-870.	1.4	3
108	Effects of Domain Size on Viscosity of α-Gel (α-Form Hydrated Crystal) Prepared from Eco-friendly Cationic Surfactant. Journal of Oleo Science, 2020, 69, 1561-1567.	1.4	3

#	Article	IF	CITATIONS
109	Removal Mechanism of Photoresist in Alkylene Carbonates with Water and Pluronic Surfactant. Journal of the Japan Society of Colour Material, 2019, 92, 181-185.	0.1	3
110	Preparation and Properties of Nanosized Biodegradable Polymer Capsules. Journal of Oleo Science, 2011, 60, 569-573.	1.4	2
111	Emulsification by Phosphorylcholine-type Gemini Amphiphile as Active Interfacial Modifier. Chemistry Letters, 2015, 44, 247-249.	1.3	2
112	Potent Anti-Proliferation on the Colon Cancer Cell Line (HT-29) of Liposomal Formulations Entrapped with Semi-Purified Job's Tears (<i>Coix lacryma-jobi</i> Linn.) Fractions. Journal of Nanoscience and Nanotechnology, 2019, 19, 1996-2007.	0.9	2
113	Adsorption and Lubrication of α-Gel (α-Form Hydrated Crystal) Dispersion at Solid/Liquid Interfaces. Journal of Oleo Science, 2021, 70, 1247-1252.	1.4	2
114	Lubrication by Adsorption Films of Hydrophilic Amine-based Protic Ionic Liquids: Effect of Anion Species. Journal of Oleo Science, 2021, 70, 1615-1621.	1.4	2
115	Adsorption at Solid/Liquid Interfaces Characterized by Atomic ForceMicroscopyï¼^AFM) and Quartz Crystal Microbalance with DissipationMonitoringï¼^QCM-D). Journal of the Adhesion Society of Japan, 2018, 54, 459-465.	0.0	2
116	Dispersion of Photoresist Particles in Alkylene Carbonates and Their Adsorption onto an ITO Substrate. Journal of the Japan Society of Colour Material, 2019, 92, 82-86.	0.1	2
117	Controlled recombination rate of lophyl radicals in cationic surfactant micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638, 128319.	4.7	2
118	Preparation of Carrageenan-Polyethyleneimine Nanocapsules Using Electrocapillary Emulsification Technique. Journal of the Japan Society of Colour Material, 2009, 82, 231-236.	0.1	1
119	Effects of Polymerizable Groups on Aqueous Phase Behavior of Monomeric and Gemini Cationic Surfactants. Journal of the Japan Society of Colour Material, 2012, 85, 317-320.	0.1	1
120	Atomic Force Microscope (AFM). , 2019, , 51-57.		1
121	Contrast Variation Small-Angle Neutron Scattering Study of Solubilization of Perfumes in Cationic Surfactant Micelles. Langmuir, 2021, 37, 10770-10775.	3.5	1
122	Impact of Doping a Phytosteryl Sulfate on the Properties of Liposomes Made of Saturated and Unsaturated Phosphatidylcholines. Journal of Oleo Science, 2021, 70, 1093-1101.	1.4	1
123	Interaction between Hydrophilic Ionic Liquid and Phospholipid/Cholesterol Mixed Film. Journal of Oleo Science, 2022, 71, 67-74.	1.4	1
124	Preparation of Highly Stable Oil-in-Water Emulsions with High Ethanol Content Using Polyglycerol Monofatty Acid Esters as Emulsifiers. Journal of Oleo Science, 2022, 71, 829-837.	1.4	1
125	α-Gel Prepared by Gemini Surfactants. Oleoscience, 2016, 16, 327-330.	0.0	0
126	Developments and Applications of Photoresponsive Molecular Assemblies. Oleoscience, 2021, 21, 227-234.	0.0	0

#	Article	IF	CITATIONS
127	Development of Commercially Available Gemini Surfactants. Oleoscience, 2012, 12, 627-633.	0.0	Ο
128	Adsorption and Desorption of Photoresist with Pluronic Surfactant:. Journal of the Japan Society of Colour Material, 2022, 95, 72-76.	0.1	0
129	Adsorption Characteristics Using Quartz Crystal Microbalance with Dissipation Monitoring Technique: Examples of Plating Additives. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2021, 72, 475-478.	0.2	0