Rozenn Le-Parc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9114636/publications.pdf

Version: 2024-02-01

1163117 1058476 15 254 8 14 citations h-index g-index papers 15 15 15 479 citing authors all docs docs citations times ranked

#	Article	lF	CITATIONS
1	Eu ³⁺ -Based Bridged Silsesquioxanes for Transparent Luminescent Solar Concentrators. ACS Applied Materials & Distriction (1988) 100 (8.0	78
2	Amorphization of faujasite at high pressure: an X-ray diffraction and Raman spectroscopy study. Journal of Materials Chemistry, 2008, 18, 5746.	6.7	37
3	One-Dimensional Molecular Crystal of Phthalocyanine Confined into Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2015, 119, 5203-5210.	3.1	21
4	Origin of Invariant Gel Melting Temperatures in the <i>c</i> â€" <i>T</i> Phase Diagram of an Organogel. Langmuir, 2016, 32, 4975-4982.	3.5	21
5	Multiscale Mechanistic Study of the Adsorption of Methyl Orange on the External Surface of Layered Double Hydroxide. Journal of Physical Chemistry C, 2019, 123, 22212-22220.	3.1	19
6	Density fluctuations in oxide glasses investigated by small-angle X-ray scattering. Journal of Applied Crystallography, 2007, 40, s512-s516.	4.5	18
7	Infrared and Raman spectroscopy of non-conventional hydrogen bonding between $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ and theoretical investigation. Physical Chemistry Chemical Physics, 2019, 21, 3310-3317.	2.8	15
8	New Insights on Vibrational Dynamics of Corannulene. Journal of Physical Chemistry C, 2012, 116, 25089-25096.	3.1	14
9	Thermoelectric properties and stability of glasses in the Cuâ€Asâ€Te system. Journal of the American Ceramic Society, 2017, 100, 2840-2851.	3.8	10
10	Evaporation-induced self-structuring of organised silica nanohybrid films through cooperative physical and chemical interactions. Physical Chemistry Chemical Physics, 2016, 18, 7946-7955.	2.8	6
11	Supramolecular organization of pi-conjugated molecules monitored by single-walled carbon nanotubes. Journal of Nanophotonics, 2015, 10, 012514.	1.0	5
12	Temperature dependence and pressure dependence of the vibrational properties of corannulene. Physica Status Solidi (B): Basic Research, 2008, 245, 2261-2263.	1.5	4
13	Hybrid Fibrillar Xerogels with Unusual Magnetic Properties. Langmuir, 2016, 32, 13193-13199.	3.5	4
14	Topological Study of Phase-Separated Ag-Conducting Chalcogenide Glasses Using Peak Force Quantitative Nano-Mechanical Characterization. Frontiers in Materials, 2020, 6, .	2.4	2
15	The role of vacancies in the pressure amorphisation phenomenon observed in Ge-Sb-Te phase change alloys. Materials Research Society Symposia Proceedings, 2010, 1251, 10.	0.1	0