Shuai Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9114600/publications.pdf Version: 2024-02-01

SHUAL FU

#	Article	IF	CITATIONS
1	Tuning interfacial charge transfer in atomically precise nanographene–graphene heterostructures by engineering van der Waals interactions. Journal of Chemical Physics, 2022, 156, 074702.	3.0	5
2	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² arbon Covalent Organic Framework Semiconductors. Angewandte Chemie - International Edition, 2022, 61, .	13.8	38
3	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² â€Carbon Covalent Organic Framework Semiconductors. Angewandte Chemie, 2022, 134, .	2.0	7
4	Nonplanar Rhombus and Kagome 2D Covalent Organic Frameworks from Distorted Aromatics for Electrical Conduction. Journal of the American Chemical Society, 2022, 144, 5042-5050.	13.7	54
5	Small Size, Big Impact: Recent Progress in Bottomâ€Up Synthesized Nanographenes for Optoelectronic and Energy Applications. Advanced Science, 2022, 9, e2106055.	11.2	54
6	Band transport by large Fröhlich polarons in MXenes. Nature Physics, 2022, 18, 544-550.	16.7	40
7	A Nanographeneâ€Based Twoâ€Ðimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angewandte Chemie - International Edition, 2022, 61, .	13.8	38
8	Outstanding Charge Mobility by Band Transport in Two-Dimensional Semiconducting Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 7489-7496.	13.7	43
9	Long-lived charge separation following pump-wavelength–dependent ultrafast charge transfer in graphene/WS ₂ heterostructures. Science Advances, 2021, 7, .	10.3	60
10	Synthesis of Nonplanar Graphene Nanoribbon with Fjord Edges. Journal of the American Chemical Society, 2021, 143, 5654-5658.	13.7	52
11	Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells. Joule, 2021, 5, 1246-1266.	24.0	91
12	Hydrothermal transformation of geopolymers to bulk zeolite structures for efficient hazardous elements adsorption. Science of the Total Environment, 2021, 767, 144973.	8.0	29
13	Molecularly Engineered Black Phosphorus Heterostructures with Improved Ambient Stability and Enhanced Charge Carrier Mobility. Advanced Materials, 2021, 33, e2105694.	21.0	16
14	Exceptional electron conduction in two-dimensional covalent organic frameworks. CheM, 2021, 7, 3309-3324.	11.7	41
15	Direct ink writing of geopolymer with high spatial resolution and tunable mechanical properties. Additive Manufacturing, 2021, 46, 102202.	3.0	8
16	Solution-Processed Graphene–Nanographene van der Waals Heterostructures for Photodetectors with Efficient and Ultralong Charge Separation. Journal of the American Chemical Society, 2021, 143, 17109-17116.	13.7	19
17	Highly mobile hot holes in Cs ₂ AgBiBr ₆ double perovskite. Science Advances, 2021, 7, eabj9066.	10.3	21
18	Mechanical properties and in situ fracture behavior of SiO2f/phosphate geopolymer composites. Rare Metals, 2020, 39, 562-569.	7.1	9

Shuai Fu

#	Article	IF	CITATIONS
19	Hydrothermal synthesis of pollucite from metakaolin-based geopolymer for hazardous wastes storage. Journal of Cleaner Production, 2020, 248, 119240.	9.3	42
20	Immobilization behavior of Sr in geopolymer and its ceramic product. Journal of the American Ceramic Society, 2020, 103, 1372-1384.	3.8	24
21	Interplay between storage temperature, medium and leaching kinetics of hazardous wastes in Metakaolin-based geopolymer. Journal of Hazardous Materials, 2020, 384, 121377.	12.4	51
22	B2O3-assisted low-temperature crystallization of pollucite structures and their potential applications in Cs+ immobilization. Journal of Nuclear Materials, 2020, 540, 152314.	2.7	21
23	Geopolymer-Encapsulated Cesium Lead Bromide Perovskite Nanocrystals for Potential Display Applications. ACS Applied Nano Materials, 2020, 3, 11695-11700.	5.0	6
24	From bulk to porous structures: Tailoring monoclinic SrAl ₂ Si ₂ O ₈ ceramic by geopolymer precursor technique. Journal of the American Ceramic Society, 2020, 103, 4957-4968.	3.8	10
25	Safe trapping of cesium into doping-enhanced pollucite structure by geopolymer precursor technique. Journal of Hazardous Materials, 2019, 367, 577-588.	12.4	43
26	In-situ formation of bulk and porous h-AlN/SiC-based ceramics from geopolymer technique. Ceramics International, 2019, 45, 24727-24733.	4.8	15
27	Monoclinic-celsian ceramics formation: Through thermal treatment of ion-exchanged 3D printing geopolymer precursor. Journal of the European Ceramic Society, 2019, 39, 563-573.	5.7	34
28	In situ processing of MWCNTs/leucite composites through geopolymer precursor. Journal of the European Ceramic Society, 2017, 37, 2219-2226.	5.7	41
29	Celsian formation from barium-exchanged geopolymer precursor: Thermal evolution. Journal of the European Ceramic Society, 2017, 37, 4179-4185.	5.7	25
30	Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceramics International, 2016, 42, 14416-14422.	4.8	240