Xiaoli Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/91146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supercritical CO ₂ â€Tailored 2D Oxygenâ€doped Amorphous Carbon Nitride for Enhanced Photocatalytic Activity. Energy and Environmental Materials, 2022, 5, 912-917.	12.8	24
2	CO ₂ -Assisted Synthesis of 2D Amorphous MoO _{3–<i>x</i>} Nanosheets: From Top-Down to Bottom-Up. Journal of Physical Chemistry Letters, 2021, 12, 1554-1559.	4.6	20
3	CO ₂ â€Induced 2D Niâ€BDC Metal–Organic Frameworks with Enhanced Photocatalytic CO ₂ Reduction Activity. Advanced Materials Interfaces, 2021, 8, 2100205.	3.7	36
4	Atomic Rearrangement and Amorphization Induced by Carbon Dioxide in Two-Dimensional MoO _{3–<i>x</i>} Nanomaterials. Journal of Physical Chemistry Letters, 2021, 12, 6543-6550.	4.6	15
5	Generation of 2D nonlayered ferromagnetic VO2(M) nanosheets induced by strain engineering of CO2. Chemical Communications, 2021, 57, 9072-9075.	4.1	7
6	Frustrated Lewis Pairs Constructed on 2D Amorphous Carbon Nitride for High‣elective Photocatalytic CO ₂ Reduction to CH ₄ . Solar Rrl, 2021, 5, 2100673.	5.8	17
7	Accurate Control of VS ₂ Nanosheets for Coexisting High Photoluminescence and Photothermal Conversion Efficiency. Angewandte Chemie, 2020, 132, 3348-3354.	2.0	11
8	Accurate Control of VS ₂ Nanosheets for Coexisting High Photoluminescence and Photothermal Conversion Efficiency. Angewandte Chemie - International Edition, 2020, 59, 3322-3328.	13.8	40
9	Supercritical CO ₂ -constructed intralayer [Bi ₂ O ₂] ²⁺ structural distortion for enhanced CO ₂ electroreduction. Journal of Materials Chemistry A, 2020, 8, 13320-13327.	10.3	29
10	Supercritical CO ₂ synthesis of Co-doped MoO _{3â^'x} nanocrystals for multifunctional light utilization. Chemical Communications, 2020, 56, 7649-7652.	4.1	23
11	Superfast Selfâ€Healing and Photothermal Active Hydrogel with Nondefective Graphene as Effective Additive. Macromolecular Materials and Engineering, 2020, 305, 2000172.	3.6	10
12	Building a lateral/vertical 1T-2H MoS ₂ /Au heterostructure for enhanced photoelectrocatalysis and surface enhanced Raman scattering. Journal of Materials Chemistry A, 2019, 7, 19922-19928.	10.3	47
13	N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO ₂ RR, ORR and Zn-air battery. Journal of Materials Chemistry A, 2019, 7, 15271-15277.	10.3	99
14	Carbon nanotube-induced phase and stability engineering: a strained cobalt-doped WSe ₂ /MWNT heterostructure for enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 4793-4800.	10.3	56
15	Unveiling a Key Intermediate in Solvent Vapor Postannealing to Enlarge Crystalline Domains of Organometal Halide Perovskite Films. Advanced Functional Materials, 2017, 27, 1604944.	14.9	107
16	CO ₂ â€Assisted Solutionâ€Phase Selective Assembly of 2D WS ₂ â€WO ₃ â <h<sub>2O and 1Tâ€2H MoS₂ to Desirable Comp Heterostructures. ChemNanoMat, 2017, 3, 632-638.</h<sub>	lex2.8	16
17	Boron Doping of Multiwalled Carbon Nanotubes Significantly Enhances Hole Extraction in Carbon-Based Perovskite Solar Cells. Nano Letters, 2017, 17, 2496-2505.	9.1	184
18	Ultrasound-spray deposition of multi-walled carbon nanotubes on NiO nanoparticles-embedded perovskite layers for high-performance carbon-based perovskite solar cells. Nano Energy, 2017, 42, 322-333.	16.0	82

XIAOLI ZHENG

#	Article	IF	CITATIONS
19	Strategies for Improving Efficiency and Stability of Perovskite Solar Cells. MRS Advances, 2017, 2, 3051-3060.	0.9	3
20	Solvent Engineering Boosts the Efficiency of Paintable Carbonâ€Based Perovskite Solar Cells to Beyond 14%. Advanced Energy Materials, 2016, 6, 1502087.	19.5	306
21	High Performance Perovskite Solar Cells through Surface Modification, Mixed Solvent Engineering and Nanobowl-Assisted Light Harvesting. MRS Advances, 2016, 1, 3175-3184.	0.9	9
22	Co(II) _{1–<i>x</i>} Co(0) _{<i>x</i>/3} Mn(III) _{2<i>x</i>/3} S Nanoparticles Supported on B/N-Codoped Mesoporous Nanocarbon as a Bifunctional Electrocatalyst of Oxygen Reduction/Evolution for High-Performance Zinc-Air Batteries. ACS Applied Materials & Interfaces, 2016, 8, 13348-13359.	8.0	77
23	Nearâ€Infrared Photoresponse of Oneâ€Sided Abrupt MAPbI ₃ /TiO ₂ Heterojunction through a Tunneling Process. Advanced Functional Materials, 2016, 26, 8545-8554.	14.9	23
24	An amorphous precursor route to the conformable oriented crystallization of CH ₃ NH ₃ PbBr ₃ in mesoporous scaffolds: toward efficient and thermally stable carbon-based perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12897-12912.	10.3	77
25	Hierarchical Dualâ€Scaffolds Enhance Charge Separation and Collection for High Efficiency Semitransparent Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600484.	3.7	40
26	Designing new fullerene derivatives as electron transporting materials for efficient perovskite solar cells with improved moisture resistance. Nano Energy, 2016, 30, 341-346.	16.0	72
27	Colloidal Precursor-Induced Growth of Ultra-Even CH3NH3PbI3 for High-Performance Paintable Carbon-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30184-30192.	8.0	53
28	High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes. Frontiers of Optoelectronics, 2016, 9, 71-80.	3.7	42
29	Designing nanobowl arrays of mesoporous TiO ₂ as an alternative electron transporting layer for carbon cathode-based perovskite solar cells. Nanoscale, 2016, 8, 6393-6402.	5.6	89
30	Highâ€Performance Grapheneâ€Based Hole Conductorâ€Free Perovskite Solar Cells: Schottky Junction Enhanced Hole Extraction and Electron Blocking. Small, 2015, 11, 2269-2274.	10.0	233
31	A multifunctional C + epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments. Journal of Materials Chemistry A, 2015, 3, 16430-16434.	10.3	77
32	A scalable electrodeposition route to the low-cost, versatile and controllable fabrication of perovskite solar cells. Nano Energy, 2015, 15, 216-226.	16.0	207
33	Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. Journal of Materials Chemistry A, 2015, 3, 24226-24231.	10.3	217
34	Space-Confined Growth of MoS ₂ Nanosheets within Graphite: The Layered Hybrid of MoS ₂ and Graphene as an Active Catalyst for Hydrogen Evolution Reaction. Chemistry of Materials, 2014, 26, 2344-2353.	6.7	634
35	Mesoporous TiO ₂ Single Crystals: Facile Shape-, Size-, and Phase-Controlled Growth and Efficient Photocatalytic Performance. ACS Applied Materials & Interfaces, 2013, 5, 11249-11257.	8.0	116
36	Solvent-Exfoliated and Functionalized Graphene with Assistance of Supercritical Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2013, 1, 144-151.	6.7	80

#	Article	IF	CITATIONS
37	High-throughput, direct exfoliation of graphite to graphene via a cooperation of supercritical CO2 and pyrene-polymers. RSC Advances, 2012, 2, 10632.	3.6	51
38	Modification of Graphene Oxide with Amphiphilic Double-Crystalline Block Copolymer Polyethylene-b-poly(ethylene oxide) with Assistance of Supercritical CO ₂ and Its Further Functionalization. Journal of Physical Chemistry B, 2011, 115, 5815-5826.	2.6	36
39	Effect of multiwalled carbon nanotubes on crystallization behavior of poly(vinylidene fluoride) in different solvents. Journal of Applied Polymer Science, 2011, 119, 1905-1913.	2.6	25

Comparison Study of Morphology and Crystallization Behavior of Polyethylene and Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 $\frac{10}{74}$ 10 Tf 50