Michael P Searle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/911458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase equilibria and microstructural constraints on the highâ€ <i>T</i> building of the Kohistan island arc: The Jijal garnet granulites, northern Pakistan. Journal of Metamorphic Geology, 2022, 40, 145-174.	3.4	6
2	Tectonic evolution of the Caledonian orogeny in Scotland: a review based on the timing of magmatism, metamorphism and deformation. Geological Magazine, 2022, 159, 124-152.	1.5	11
3	One line on the map: A review of the geological history of the Semail Thrust, Oman-UAE mountains. Journal of Structural Geology, 2022, 158, 104594.	2.3	10
4	Crustal Structure of the UAEâ€Oman Mountain Range and Arabian Rifted Passive Margin: New Constraints From Active and Passive Seismic Methods. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021374.	3.4	11
5	Burial, Accretion, and Exhumation of the Metamorphic Sole of the Omanâ€UAE Ophiolite. Tectonics, 2021, 40, e2020TC006392.	2.8	9
6	The Origin of Felsic Intrusions Within the Mantle Section of the Samail Ophiolite: Geochemical Evidence for Three Distinct Mixing and Fractionation Trends. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020760.	3.4	14
7	Highâ€Precision Uâ€Pb Zircon Dating of Late Magmatism in the Samail Ophiolite: A Record of Subduction Initiation. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020758.	3.4	22
8	Crustal and Mantle Deformation Inherited From Obduction of the Semail Ophiolite (Oman) and Continental Collision (Zagros). Tectonics, 2021, 40, e2020TC006644.	2.8	10
9	Dating Continental Subduction Beneath the Samail Ophiolite: Garnet, Zircon, and Rutile Petrochronology of the As Sifah Eclogites, NE Oman. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022715.	3.4	9
10	Compressional metamorphic core complexes, low-angle normal faults and extensional fabrics in compressional tectonic settings. Geological Magazine, 2020, 157, 101-118.	1.5	22
11	The Age, Origin, and Emplacement of the Tsiknias Ophiolite, Tinos, Greece. Tectonics, 2020, 39, e2019TC005677.	2.8	16
12	Structural and tectonic development of the Indo-Burma ranges. Earth-Science Reviews, 2020, 200, 102992.	9.1	60
13	Compressional origin of the Aegean Orogeny, Greece. Geoscience Frontiers, 2020, , .	8.4	6
14	Petrochronology of Wadi Tayin Metamorphic Sole Metasediment, With Implications for the Thermal and Tectonic Evolution of the Samail Ophiolite (Oman/UAE). Tectonics, 2020, 39, e2020TC006135.	2.8	24
15	Geophysical imaging of ophiolite structure in the United Arab Emirates. Nature Communications, 2020, 11, 2671.	12.8	27
16	The Cycladic Blueschist Unit on Tinos, Greece: Cold NE Subduction and SW Directed Extrusion of the Cycladic Continental Margin Under the Tsiknias Ophiolite. Tectonics, 2020, 39, e2019TC005890.	2.8	10
17	Timing of Syeniteâ€Charnockite Magmatism and Ruby and Sapphire Metamorphism in the Mogok Valley Region, Myanmar. Tectonics, 2020, 39, e2019TC005998.	2.8	30
18	Structural and thermal evolution of the South Tibetan Detachment shear zone in the Mt Everest region, from the 1933 sample collection of L. R. Wager. Geological Society Special Publication, 2019, 478, 335-372.	1.3	12

#	Article	IF	CITATIONS
19	Towards resolving the metamorphic enigma of the Indian Plate in the NW Himalaya of Pakistan. Geological Society Special Publication, 2019, 483, 255-279.	1.3	18
20	Introduction to Himalayan tectonics: a modern synthesis. Geological Society Special Publication, 2019, 483, 1-17.	1.3	30
21	Protolith lithostratigraphy of the Greater Himalayan Series in Langtang, Nepal: implications for the architecture of the northern Indian margin. Geological Society Special Publication, 2019, 483, 281-304.	1.3	9
22	Structural and metamorphic evolution of the Karakoram and Pamir following India–Kohistan–Asia collision. Geological Society Special Publication, 2019, 483, 555-582.	1.3	15
23	Timing of subduction initiation, arc formation, ophiolite obduction and India–Asia collision in the Himalaya. Geological Society Special Publication, 2019, 483, 19-37.	1.3	36
24	3â€D Structure of the Northern Omanâ€UAE Ophiolite: Widespread, Shortâ€Lived, Suprasubduction Zone Magmatism. Tectonics, 2019, 38, 233-252.	2.8	15
25	Controls on the rheological properties of peridotite at a palaeosubduction interface: A transect across the base of the Oman–UAE ophiolite. Earth and Planetary Science Letters, 2018, 491, 193-206.	4.4	26
26	Subsidence History and Seismic Stratigraphy of the Western Musandam Peninsula, Oman–United Arab Emirates Mountains. Tectonics, 2018, 37, 154-181.	2.8	31
27	Origin and implications of a thrust-bound gypsiferous unit along the western edge of Jabal Sumeini, northern Oman Mountains. Journal of Asian Earth Sciences, 2018, 154, 101-124.	2.3	7
28	The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: Tectonic and metallogenic implications. Gondwana Research, 2018, 62, 27-60.	6.0	76
29	Chapter 12 Tectonic and metamorphic evolution of the Mogok Metamorphic and Jade Mines belts and ophiolitic terranes of Burma (Myanmar). Geological Society Memoir, 2017, 48, 261-293.	1.7	50
30	Chapter 2 Active tectonics of Myanmar and the Andaman Sea. Geological Society Memoir, 2017, 48, 19-52.	1.7	39
31	Spatial variation in exhumation rates across Ladakh and the Karakoram: New apatite fission track data from the Eastern Karakoram, NW India. Tectonics, 2016, 35, 704-721.	2.8	20
32	Age and anatomy of the Gongga Shan batholith, eastern Tibetan Plateau, and its relationship to the active Xianshui-he fault. , 2016, 12, 948-970.		38
33	The tectonic and metallogenic framework of Myanmar: A Tethyan mineral system. Ore Geology Reviews, 2016, 79, 26-45.	2.7	78
34	Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: New constraints on the tectonic evolution during ophiolite formation from high-precision U–Pb zircon geochronology. Earth and Planetary Science Letters, 2016, 451, 185-195.	4.4	154
35	Did Oligocene crustal thickening precede basin development in northern Thailand? A geochronological reassessment of Doi Inthanon and Doi Suthep. Lithos, 2016, 240-243, 69-83.	1.4	32
36	Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nature Geoscience, 2016, 9, 174-180.	12.9	302

#	Article	IF	CITATIONS
37	Rongbuk re-visited: Geochronology of leucogranites in the footwall of the South Tibetan Detachment System, Everest Region, Southern Tibet. Lithos, 2015, 227, 94-106.	1.4	69
38	Neo-Tethyan magmatism and metallogeny in Myanmar – An Andean analogue?. Journal of Asian Earth Sciences, 2015, 106, 197-215.	2.3	97
39	Quantifying the <i>P–T–t</i> conditions of north–south Lhasa terrane accretion: new insight into the preâ€Himalayan architecture of the Tibetan plateau. Journal of Metamorphic Geology, 2015, 33, 91-113.	3.4	28
40	U–Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications. Gondwana Research, 2015, 27, 719-732.	6.0	85
41	UAE-Oman Mountains Give Clues to Oceanic Crust and Mantle Rocks. Eos, 2015, 96, .	0.1	2
42	Structure of the northern Oman Mountains from the Semail Ophiolite to the Foreland Basin. Geological Society Special Publication, 2014, 392, 129-153.	1.3	22
43	The metallogenic provinces of Myanmar. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 2014, 123, 25-38.	0.8	34
44	Structure of the metamorphic sole to the Oman Ophiolite, Sumeini Window and Wadi Tayyin: implications for ophiolite obduction processes. Geological Society Special Publication, 2014, 392, 155-175.	1.3	76
45	Phase equilibria modelling of retrograde amphibole and clinozoisite in mafic eclogite from the Tso Morari massif, northwest India: constraining the <i>P</i> – <i>T</i> – <i>M</i> (H ₂ O) conditions of exhumation. Journal of Metamorphic Geology, 2014, 32, 675-693.	3.4	59
46	Tectonics of the Musandam Peninsula and northern Oman Mountains: From ophiolite obduction to continental collision. Geoarabia, 2014, 19, 135-174.	1.6	76
47	Integrated pressure–temperature–time constraints for the <scp>T</scp> so <scp>M</scp> orari dome (<scp>N</scp> orthwest <scp>I</scp> ndia): implications for the burial and exhumation path of <scp>UHP</scp> units in the western <scp>H</scp> imalaya. Journal of Metamorphic Geology, 2013, 31, 469-504.	3.4	133
48	Crustal melting, ductile flow, and deformation in mountain belts: Cause and effect relationships. Lithosphere, 2013, 5, 547-554.	1.4	65
49	Seismic stratigraphy and subsidence history of the United Arab Emirates (UAE) rifted margin and overlying foreland basins. Frontiers in Earth Sciences, 2013, , 127-143.	0.1	23
50	Salt intrusions in Jabal Qumayrah, northern Oman Mountains: Implications from structural and gravity investigations. Geoarabia, 2013, 18, 141-176.	1.6	13
51	Combined thermobarometry and geochronology of peraluminous metapelites from the Karakoram metamorphic complex, North Pakistan; New insight into the tectonothermal evolution of the Baltoro and Hunza Valley regions. Journal of Metamorphic Geology, 2012, 30, 793-820.	3.4	48
52	Tectonic evolution of the Sibumasu–Indochina terrane collision zone in Thailand and Malaysia: constraints from new U–Pb zircon chronology of SE Asian tin granitoids. Journal of the Geological Society, 2012, 169, 489-500.	2.1	216
53	Constraints on brittle field exhumation of the Everestâ€Makalu section of the Greater Himalayan Sequence: Implications for models of crustal flow. Tectonics, 2012, 31, .	2.8	27
54	Structural evolution of Jabal Qumayrah: A salt-intruded culmination in the northern Oman Mountains. Geoarabia, 2012, 17, 121-150.	1.6	17

4

#	Article	IF	CITATIONS
55	Zircon age determinations for the Ladakh batholith at Chumathang (Northwest India): Implications for the age of the India–Asia collision in the Ladakh Himalaya. Tectonophysics, 2010, 495, 171-183.	2.2	62
56	Was Late Cretaceous–Paleocene obduction of ophiolite complexes the primary cause of crustal thickening and regional metamorphism in the Pakistan Himalaya?. Geological Society Special Publication, 2010, 338, 345-359.	1.3	33
57	Structural constraints on the timing of left-lateral shear along the Red River shear zone in the Ailao Shan and Diancang Shan Ranges, Yunnan, SW China. , 2010, 6, 316-338.		167
58	Comparing Tibet-Himalayan and Caledonian crustal architecture, evolution and mountain building processes. Geological Society Special Publication, 2010, 335, 207-232.	1.3	29
59	Low-angle normal faults in the compressional Himalayan orogen; Evidence from the Annapurna–Dhaulagiri Himalaya, Nepal. , 2010, 6, 296-315.		71
60	Crustal stacking and expulsion tectonics during continental subduction: P-T deformation constraints from Oman. Tectonics, 2010, 29, n/a-n/a.	2.8	74
61	Crustal melt granites and migmatites along the Himalaya: melt source, segregation, transport and granite emplacement mechanisms. , 2010, , .		11
62	Metamorphism, melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite: Constraints from thermobarometry, metamorphic modeling, and U-Pb geochronology. Tectonics, 2010, 29, n/a-n/a.	2.8	102
63	Crustal melt granites and migmatites along the Himalaya: melt source, segregation, transport and granite emplacement mechanisms. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2009, 100, 219-233.	0.3	114
64	Geochronology of granulitized eclogite from the Ama Drime Massif: Implications for the tectonic evolution of the South Tibetan Himalaya. Tectonics, 2009, 28, .	2.8	133
65	Structural and tectonic evolution of the Jabal Sumeini – Al Ain – Buraimi region, northern Oman and eastern United Arab Emirates. Geoarabia, 2009, 14, 115-142.	1.6	45
66	<i>P–T–t–D</i> paths of Everest Series schist, Nepal. Journal of Metamorphic Geology, 2008, 26, 717-739.	3.4	102
67	Cretaceous-Tertiary Carbonate Platform Evolution and the Age of the India-Asia Collision along the Ladakh Himalaya (Northwest India). Journal of Geology, 2008, 116, 331-353.	1.4	208
68	Accurate Relative Earthquake Hypocenters Reveal Structure of the Burma Subduction Zone. Bulletin of the Seismological Society of America, 2008, 98, 2815-2827.	2.3	38
69	Defining the Himalayan Main Central Thrust in Nepal. Journal of the Geological Society, 2008, 165, 523-534.	2.1	276
70	Diagnostic features and processes in the construction and evolution of Oman-, Zagros-, Himalayan-, Karakoram-, and Tibetan-type orogenic belts. Memoir of the Geological Society of America, 2007, , 41-61.	0.5	9
71	Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks. Tectonics, 2007, 26, n/a-n/a.	2.8	278
72	Relationships between right-lateral shear along the Karakoram fault and metamorphism, magmatism, exhumation and uplift: evidence from the K2–Gasherbrum–Pangong ranges, north Pakistan and Ladakh. Journal of the Geological Society, 2007, 164, 439-450.	2.1	83

#	Article	IF	CITATIONS
73	Macrostructural and microstructural architecture of the Karakoram fault: Relationship between magmatism and strike-slip faulting. Tectonics, 2007, 26, n/a-n/a.	2.8	61
74	Reply to comment by Jason Ali and Jonathan C. Aitchison on "Trans-Hudson Orogen of North America and Himalaya-Karakoram-Tibet Orogen of Asia: Structural and thermal characteristics of lower and upper plates―by M. R. St-Onge et al Tectonics, 2007, 26, n/a-n/a.	2.8	4
75	Structural insights into the early stages of exhumation along an orogen-scale detachment: The South Tibetan Detachment System, Dzakaa Chu section, Eastern Himalaya. Journal of Structural Geology, 2007, 29, 1781-1797.	2.3	112
76	Restoration of the Western Himalaya: implications for metamorphic protoliths, thrust and normal faulting, and channel flow models. Episodes, 2007, 30, 242-257.	1.2	36
77	Structural geometry, style and timing of deformation in the Hawasina Window, Al Jabal al Akhdar and Saih Hatat culminations, Oman Mountains. Geoarabia, 2007, 12, 99-130.	1.6	137
78	Channel flow, ductile extrusion and exhumation in continental collision zones: an introduction. Geological Society Special Publication, 2006, 268, 1-23.	1.3	257
79	Trans-Hudson Orogen of North America and Himalaya-Karakoram-Tibetan Orogen of Asia: Structural and thermal characteristics of the lower and upper plates. Tectonics, 2006, 25, n/a-n/a.	2.8	128
80	Configuration of the Indian Moho beneath the NW Himalaya and Ladakh. Geophysical Research Letters, 2006, 33, .	4.0	155
81	Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology, 2006, 34, 989.	4.4	195
82	Structural evolution and vorticity of flow during extrusion and exhumation of the Greater Himalayan Slab, Mount Everest Massif, Tibet/Nepal: implications for orogen-scale flow partitioning. Geological Society Special Publication, 2006, 268, 379-413.	1.3	72
83	Mechanisms and timescales of felsic magma segregation, ascent and emplacement in the Himalaya. Geological Society Special Publication, 2006, 268, 293-308.	1.3	18
84	Crustal structure, restoration and evolution of the Greater Himalaya in Nepal-South Tibet: implications for channel flow and ductile extrusion of the middle crust. Geological Society Special Publication, 2006, 268, 355-378.	1.3	81
85	Dating the geologic history of Oman's Semail ophiolite: insights from U-Pb geochronology. Contributions To Mineralogy and Petrology, 2005, 150, 403-422.	3.1	184
86	Channel flow and ductile extrusion of the high Himalayan slab-the Kangchenjunga–Darjeeling profile, Sikkim Himalayaâ~†. Journal of Asian Earth Sciences, 2005, 25, 173-185.	2.3	130
87	Age constraints on ductile deformation and long-term slip rates along the Karakoram fault zone, Ladakh. Earth and Planetary Science Letters, 2004, 226, 305-319.	4.4	165
88	Dating the subduction of the Arabian continental margin beneath the Semail ophiolite, Oman. Geology, 2003, 31, 889.	4.4	74
89	Subduction zone polarity in the Oman Mountains: implications for ophiolite emplacement. Geological Society Special Publication, 2003, 218, 467-480.	1.3	23
90	Subduction zone metamorphism during formation and emplacement of the Semail ophiolite in the Oman Mountains. Geological Magazine, 2002, 139, 241-255.	1.5	133

#	Article	IF	CITATIONS
91	Structure of the Main Central Thrust zone and extrusion of the High Himalayan deep crustal wedge, Kishtwar–Zanskar Himalaya. Journal of the Geological Society, 2001, 158, 637-652.	2.1	85
92	U–Pb zircon ages from the Spontang Ophiolite, Ladakh Himalaya. Journal of the Geological Society, 2001, 158, 513-520.	2.1	96
93	Chronology of deformation, metamorphism, and magmatism in the southern Karakoram Mountains. Bulletin of the Geological Society of America, 2001, 113, 1443-1455.	3.3	152
94	Tectonics of the Nanga Parbat syntaxis and the western Himalaya: an introduction. Geological Society Special Publication, 2000, 170, 1-6.	1.3	7
95	Metamorphism, Melting, and Extension: Age Constraints from the High Himalayan Slab of Southeast Zanskar and Northwest Lahaul. Journal of Geology, 1999, 107, 473-495.	1.4	152
96	Extensional and compressional faults in the Everest–Lhotse massif, Khumbu Himalaya, Nepal. Journal of the Geological Society, 1999, 156, 227-240.	2.1	134
97	The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics, 1999, 18, 929-949.	2.8	223
98	Age of crustal melting, emplacement and exhumation history of the Shivling leucogranite, Garhwal Himalaya. Geological Magazine, 1999, 136, 513-525.	1.5	113
99	Tectonic significance of 24 Ma crustal melting in the eastern Hindu Kush, Pakistan. Geology, 1998, 26, 871-874.	4.4	42
100	Shisha Pangma Leucogranite, South Tibetan Himalaya: Field Relations, Geochemistry, Age, Origin, and Emplacement. Journal of Geology, 1997, 105, 295-318.	1.4	345
101	Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics, 1996, 15, 1264-1291.	2.8	445
102	Age of crustal melting and leucogranite formation from U-Pb zircon and monazite dating in the western Himalaya, Zanskar, India. Geology, 1995, 23, 1135.	4.4	117
103	Structure and metamorphism of blueschist–eclogite facies rocks from the northeastern Oman Mountains. Journal of the Geological Society, 1994, 151, 555-576.	2.1	115
104	Pressure, temperature and time constraints on Himalayan metamorphism from eastern Kashmir and western Zanskar. Journal of the Geological Society, 1992, 149, 753-773.	2.1	109
105	Field relations, geochemistry, origin and emplacement of the Baltoro granite, Central Karakoram. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83, 519-538.	0.7	68
106	Structural and thermal evolution of the Karakoram crust. Journal of the Geological Society, 1991, 148, 65-82.	2.1	85
107	The northern Oman Tethyan continental margin: stratigraphy, structure, concepts and controversies. Geological Society Special Publication, 1990, 49, 3-25.	1.3	94
108	Structure of the Jebel Sumeini-Jebel Ghawil area, Northern Oman. Geological Society Special Publication, 1990, 49, 361-374.	1.3	26

7

#	Article	IF	CITATIONS
109	Age of crystallization and cooling of the K2 gneiss in the Baltoro Karakoram. Journal of the Geological Society, 1990, 147, 603-606.	2.1	48
110	Metamorphic, magmatic, and tectonic evolution of the central Karakoram in the Biafo-Baltoro-Hushe regions of northern Pakistan. Special Paper of the Geological Society of America, 1989, , 47-74.	0.5	83
111	Geothermobarometry and development of inverted metamorphism in the Darjeeling-Sikkim region of the eastern Himalayan. Journal of Metamorphic Geology, 1989, 7, 95-110.	3.4	81
112	Thermal model for the Zanskar Himalaya. Journal of Metamorphic Geology, 1989, 7, 127-134.	3.4	184
113	Thrust tectonics of the Dibba zone and the structural evolution of the Arabian continental margin along the Musandam mountains (Oman and United Arab Emirates). Journal of the Geological Society, 1988, 145, 43-53.	2.1	88
114	Structure of the Musandam culmination (Sultanate of Oman and United Arab Emirates) and the Straits of Hormuz syntaxis. Journal of the Geological Society, 1988, 145, 831-845.	2.1	79
115	The closing of Tethys and the tectonics of the Himalaya. Bulletin of the Geological Society of America, 1987, 98, 678.	3.3	633
116	The Cretaceousâ€ŧertiary deformation of the Lhasa Block and its implications for crustal thickening in Tibet. Tectonics, 1986, 5, 1-14.	2.8	173
117	Structure of the Hawasina Window culmination, central Oman Mountains. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1986, 77, 143-156.	0.7	41
118	Sedimentological and structural evolution of the Arabian continental margin in the Musandam Mountains and Dibba zone, United Arab Emirates. Bulletin of the Geological Society of America, 1983, 94, 1381.	3.3	146
119	Stratigraphy, structure and evolution of the Tibetan–Tethys zone in Zanskar and the Indus suture zone in the Ladakh Himalaya. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1983, 73, 205-219.	0.7	99
120	Petrochemistry and origin of sub-ophiolitic metamorphic and related rocks in the Oman Mountains. Journal of the Geological Society, 1982, 139, 235-248.	2.1	137
121	Structure and metamorphism of rocks beneath the Semail ophiolite of Oman and their significance in ophiolite obduction. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1980, 71, 247-262.	0.7	233
122	Volcanic rocks beneath the Semail Ophiolite nappe in the northern Oman mountains and their significance in the Mesozoic evolution of Tethys. Journal of the Geological Society, 1980, 137, 589-604.	2.1	131