
## Tailin Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9114135/publications.pdf Version: 2024-02-01



ΤΛΙΓΙΝΙ ΧΙΙ

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biodegradable Biomimic Copper/Manganese Silicate Nanospheres for Chemodynamic/Photodynamic<br>Synergistic Therapy with Simultaneous Glutathione Depletion and Hypoxia Relief. ACS Nano, 2019, 13,<br>4267-4277. | 14.6 | 513       |
| 2  | An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nature Communications, 2020, 11, 1735.                                                         | 12.8 | 343       |
| 3  | Fuelâ€Free Synthetic Microâ€/Nanomachines. Advanced Materials, 2017, 29, 1603250.                                                                                                                               | 21.0 | 310       |
| 4  | Reversible Swarming and Separation of Self-Propelled Chemically Powered Nanomotors under Acoustic Fields. Journal of the American Chemical Society, 2015, 137, 2163-2166.                                       | 13.7 | 258       |
| 5  | Turning Erythrocytes into Functional Micromotors. ACS Nano, 2014, 8, 12041-12048.                                                                                                                               | 14.6 | 247       |
| 6  | Magneto–Acoustic Hybrid Nanomotor. Nano Letters, 2015, 15, 4814-4821.                                                                                                                                           | 9.1  | 239       |
| 7  | Cellâ€Membraneâ€Coated Synthetic Nanomotors for Effective Biodetoxification. Advanced Functional<br>Materials, 2015, 25, 3881-3887.                                                                             | 14.9 | 212       |
| 8  | Enteric Micromotor Can Selectively Position and Spontaneously Propel in the Gastrointestinal Tract. ACS Nano, 2016, 10, 9536-9542.                                                                              | 14.6 | 211       |
| 9  | Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC - Trends in Analytical Chemistry, 2021, 134, 116130.                                                                                  | 11.4 | 207       |
| 10 | Programmable Fractal Nanostructured Interfaces for Specific Recognition and Electrochemical Release of Cancer Cells. Advanced Materials, 2013, 25, 3566-3570.                                                   | 21.0 | 198       |
| 11 | Ultrasound propulsion of micro-/nanomotors. Applied Materials Today, 2017, 9, 493-503.                                                                                                                          | 4.3  | 182       |
| 12 | Highly Efficient Freestyle Magnetic Nanoswimmer. Nano Letters, 2017, 17, 5092-5098.                                                                                                                             | 9.1  | 182       |
| 13 | Ultrasound-Modulated Bubble Propulsion of Chemically Powered Microengines. Journal of the<br>American Chemical Society, 2014, 136, 8552-8555.                                                                   | 13.7 | 177       |
| 14 | Multiscale Disordered Porous Fibers for Self-Sensing and Self-Cooling Integrated Smart Sportswear.<br>ACS Nano, 2020, 14, 559-567.                                                                              | 14.6 | 162       |
| 15 | Artificial intelligence biosensors: Challenges and prospects. Biosensors and Bioelectronics, 2020, 165, 112412.                                                                                                 | 10.1 | 153       |
| 16 | Electrochemical hydrogen sulfide biosensors. Analyst, The, 2016, 141, 1185-1195.                                                                                                                                | 3.5  | 143       |
| 17 | Flexible and Superwettable Bands as a Platform toward Sweat Sampling and Sensing. Analytical Chemistry, 2019, 91, 4296-4300.                                                                                    | 6.5  | 136       |
| 18 | Graphene-Based Biosensors for Detection of Biomarkers. Micromachines, 2020, 11, 60.                                                                                                                             | 2.9  | 132       |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Stretchable Conductive Fibers of Ultrahigh Tensile Strain and Stable Conductance Enabled by a<br>Worm-Shaped Graphene Microlayer. Nano Letters, 2019, 19, 6592-6599.                                      | 9.1  | 126       |
| 20 | Integrated Smart Janus Textile Bands for Self-Pumping Sweat Sampling and Analysis. ACS Sensors, 2020,<br>5, 1548-1554.                                                                                    | 7.8  | 120       |
| 21 | Bioinspired superwettable micropatterns for biosensing. Chemical Society Reviews, 2019, 48, 3153-3165.                                                                                                    | 38.1 | 110       |
| 22 | The role of sampling in wearable sweat sensors. Talanta, 2020, 212, 120801.                                                                                                                               | 5.5  | 97        |
| 23 | Target-Triggered Catalytic Hairpin Assembly-Induced Core–Satellite Nanostructures for High-Sensitive<br>"Off-to-On―SERS Detection of Intracellular MicroRNA. Analytical Chemistry, 2018, 90, 10591-10599. | 6.5  | 85        |
| 24 | Superwettable Electrochemical Biosensor toward Detection of Cancer Biomarkers. ACS Sensors, 2018, 3, 72-78.                                                                                               | 7.8  | 84        |
| 25 | Multifunctional hydrogel as wound dressing for intelligent wound monitoring. Chemical<br>Engineering Journal, 2022, 433, 134625.                                                                          | 12.7 | 84        |
| 26 | Lateral flow biosensors based on the use of micro- and nanomaterials: a review on recent developments. Mikrochimica Acta, 2020, 187, 70.                                                                  | 5.0  | 81        |
| 27 | Superwettable Microchips as a Platform toward Microgravity Biosensing. ACS Nano, 2017, 11, 621-626.                                                                                                       | 14.6 | 74        |
| 28 | Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosensors and Bioelectronics, 2022, 196, 113760.                                                                         | 10.1 | 74        |
| 29 | Biospired Janus Silk E-Textiles with Wet–Thermal Comfort for Highly Efficient Biofluid Monitoring.<br>Nano Letters, 2021, 21, 8880-8887.                                                                  | 9.1  | 71        |
| 30 | Superwettable nanodendritic gold substrates for direct miRNA SERS detection. Nanoscale, 2018, 10, 20990-20994.                                                                                            | 5.6  | 69        |
| 31 | Electrochemical Sensors for Nitric Oxide Detection in Biological Applications. Electroanalysis, 2014, 26, 449-468.                                                                                        | 2.9  | 65        |
| 32 | Flexible, self-healable, adhesive and wearable hydrogel patch for colorimetric sweat detection.<br>Journal of Materials Chemistry C, 2021, 9, 14938-14945.                                                | 5.5  | 65        |
| 33 | Nanodendritic gold/graphene-based biosensor for tri-mode miRNA sensing. Chemical Communications, 2019, 55, 1742-1745.                                                                                     | 4.1  | 63        |
| 34 | Flexible Superwettable Tapes for On-Site Detection of Heavy Metals. Analytical Chemistry, 2018, 90,<br>14105-14110.                                                                                       | 6.5  | 59        |
| 35 | Cancer Cell Membrane Camouflaged Semi‥olk@Spikyâ€5hell Nanomotor for Enhanced Cell Adhesion and<br>Synergistic Therapy. Small, 2020, 16, e2003834.                                                        | 10.0 | 54        |
| 36 | Integrated Ultrasonic Aggregation-Induced Enrichment with Raman Enhancement for Ultrasensitive<br>and Rapid Biosensing. Analytical Chemistry, 2020, 92, 7816-7821.                                        | 6.5  | 54        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Core@Satellite Janus Nanomotors with pHâ€Responsive Multiâ€phoretic Propulsion. Angewandte Chemie -<br>International Edition, 2020, 59, 14368-14372.                                                                     | 13.8 | 52        |
| 38 | Microdroplet-captured tapes for rapid sampling and SERS detection of food contaminants. Biosensors and Bioelectronics, 2020, 152, 112013.                                                                                | 10.1 | 50        |
| 39 | An electrochemical wearable sensor for levodopa quantification in sweat based on a metal–Organic<br>framework/graphene oxide composite with integrated enzymes. Sensors and Actuators B: Chemical,<br>2022, 359, 131586. | 7.8  | 48        |
| 40 | Detection of coronavirus in environmental surveillance and risk monitoring for pandemic control.<br>Chemical Society Reviews, 2021, 50, 3656-3676.                                                                       | 38.1 | 46        |
| 41 | Hollow mesoporous carbon@Pt Janus nanomotors with dual response of H2O2 and near-infrared light for active cargo delivery. Applied Materials Today, 2019, 17, 85-91.                                                     | 4.3  | 44        |
| 42 | Renewable superwettable biochip for miRNA detection. Sensors and Actuators B: Chemical, 2018, 258, 715-721.                                                                                                              | 7.8  | 42        |
| 43 | Controllable Swarming and Assembly of Micro/Nanomachines. Micromachines, 2018, 9, 10.                                                                                                                                    | 2.9  | 42        |
| 44 | Dendritic Janus Nanomotors with Precisely Modulated Coverages and Their Effects on Propulsion.<br>ACS Applied Materials & Interfaces, 2019, 11, 10426-10433.                                                             | 8.0  | 42        |
| 45 | Integrated individually electrochemical array for simultaneously detecting multiple Alzheimer's biomarkers. Biosensors and Bioelectronics, 2020, 162, 112253.                                                            | 10.1 | 42        |
| 46 | Freeâ€Blockage Mesoporous Anticancer Nanoparticles Based on ROSâ€Responsive Wetting Behavior of Nanopores. Small, 2017, 13, 1701942.                                                                                     | 10.0 | 41        |
| 47 | Wearable strain sensor for real-time sweat volume monitoring. IScience, 2021, 24, 102028.                                                                                                                                | 4.1  | 41        |
| 48 | Radiative Cooling and Solar Heating Janus Films for Personal Thermal Management. ACS Applied<br>Materials & Interfaces, 2022, 14, 18877-18883.                                                                           | 8.0  | 41        |
| 49 | Vapor-Driven Propulsion of Catalytic Micromotors. Scientific Reports, 2015, 5, 13226.                                                                                                                                    | 3.3  | 40        |
| 50 | Flexible microfluidic nanoplasmonic sensors for refreshable and portable recognition of sweat biochemical fingerprint. Npj Flexible Electronics, 2022, 6, .                                                              | 10.7 | 40        |
| 51 | Smartphone-based tape sensors for multiplexed rapid urinalysis. Sensors and Actuators B: Chemical, 2020, 304, 127415.                                                                                                    | 7.8  | 37        |
| 52 | Superhydrophilic cotton thread with temperature-dependent pattern for sensitive nucleic acid detection. Biosensors and Bioelectronics, 2016, 86, 951-957.                                                                | 10.1 | 35        |
| 53 | Cell micropatterns based on silicone-oil-modified slippery surfaces. Nanoscale, 2016, 8, 18612-18615.                                                                                                                    | 5.6  | 33        |
| 54 | Underwaterâ€Transparent Nanodendritic Coatings for Directly Monitoring Cancer Cells. Advanced<br>Healthcare Materials, 2014, 3, 332-337.                                                                                 | 7.6  | 32        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Janus dendritic silica/carbon@Pt nanomotors with multiengines for H <sub>2</sub> O <sub>2</sub> ,<br>near-infrared light and lipase powered propulsion. Soft Matter, 2020, 16, 9553-9558.                          | 2.7  | 31        |
| 56 | An electrochemical aptasensor based on AuPt alloy nanoparticles for ultrasensitive detection of amyloid-β oligomers. Talanta, 2021, 231, 122360.                                                                   | 5.5  | 30        |
| 57 | NIR powered Janus nanocarrier for deep tumor penetration. Applied Materials Today, 2020, 18, 100504.                                                                                                               | 4.3  | 29        |
| 58 | Artificial Asymmetric Cilia Array of Dielectric Elastomer for Cargo Transportation. ACS Applied<br>Materials & Interfaces, 2018, 10, 42979-42984.                                                                  | 8.0  | 27        |
| 59 | Hydrophilic metal-organic frameworks integrated uricase for wearable detection of sweat uric acid.<br>Analytica Chimica Acta, 2022, 1208, 339843.                                                                  | 5.4  | 25        |
| 60 | Two-Dimensional Metalloporphyrinic Framework Nanosheet-Based Dual-Mechanism-Driven<br>Ratiometric Electrochemiluminescent Biosensing of Protein Kinase Activity. ACS Applied Bio Materials,<br>2021, 4, 1616-1623. | 4.6  | 24        |
| 61 | Customizable Textile Sensors Based on Helical Core–Spun Yarns for Seamless Smart Garments.<br>Langmuir, 2021, 37, 3122-3129.                                                                                       | 3.5  | 24        |
| 62 | Mini-pillar microarray for individually electrochemical sensing in microdroplets. Biosensors and<br>Bioelectronics, 2020, 149, 111845.                                                                             | 10.1 | 23        |
| 63 | Construction of dendritic Janus nanomotors with H <sub>2</sub> O <sub>2</sub> and NIR light dual-propulsion <i>via</i> a Pickering emulsion. Soft Matter, 2020, 16, 4961-4968.                                     | 2.7  | 23        |
| 64 | Integrating modification and detection in acoustic microchip for in-situ analysis. Biosensors and Bioelectronics, 2020, 158, 112185.                                                                               | 10.1 | 23        |
| 65 | Ultra-Trace Protein Detection by Integrating Lateral Flow Biosensor with Ultrasound Enrichment.<br>Analytical Chemistry, 2021, 93, 2996-3001.                                                                      | 6.5  | 22        |
| 66 | Advanced micro/nanomotors for enhanced bioadhesion and tissue penetration. Applied Materials<br>Today, 2021, 23, 101034.                                                                                           | 4.3  | 21        |
| 67 | Integrated Wound Recognition in Bandages for Intelligent Treatment. Advanced Healthcare Materials, 2020, 9, e2000941.                                                                                              | 7.6  | 20        |
| 68 | Near-infrared light-driven yolk@shell carbon@silica nanomotors for fuel-free triglyceride<br>degradation. Nano Research, 2021, 14, 654-659.                                                                        | 10.4 | 20        |
| 69 | Portable electrochemical micro-workstation platform for simultaneous detection of multiple<br>Alzheimer's disease biomarkers. Mikrochimica Acta, 2022, 189, 91.                                                    | 5.0  | 19        |
| 70 | Integrated Microdroplets Array for Intelligent Electrochemical Fabrication. Advanced Functional<br>Materials, 2020, 30, 1910329.                                                                                   | 14.9 | 18        |
| 71 | Acoustic aggregation-induced separation for enhanced fluorescence detection of Alzheimer's biomarker. Talanta, 2021, 233, 122517.                                                                                  | 5.5  | 17        |
| 72 | Powering bioanalytical applications in biomedicine with light-responsive Janus micro-/nanomotors.<br>Mikrochimica Acta, 2022, 189, 116.                                                                            | 5.0  | 17        |

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Enhanced Isothermal Amplification for Ultrafast Sensing of SARS-CoV-2 in Microdroplets. Analytical<br>Chemistry, 2022, 94, 4135-4140.                                                                          | 6.5  | 16        |
| 74 | Droplet array for open-channel high-throughput SERS biosensing. Talanta, 2020, 218, 121206.                                                                                                                    | 5.5  | 15        |
| 75 | Cost-Effective Screening of Antimicrobial Performance of Multiple Metal–Organic Frameworks via a<br>Droplet-Based Batch Synthesis Platform. ACS Sustainable Chemistry and Engineering, 2022, 10,<br>6476-6482. | 6.7  | 15        |
| 76 | Rutheniumâ€based Conjugated Polymer and Metalâ€organic Framework Nanocomposites for Glucose<br>Sensing. Electroanalysis, 2021, 33, 1902-1910.                                                                  | 2.9  | 14        |
| 77 | Core@Satellite Janus Nanomotors with pHâ€Responsive Multiâ€phoretic Propulsion. Angewandte Chemie,<br>2020, 132, 14474-14478.                                                                                  | 2.0  | 12        |
| 78 | Target-triggered regioselective assembly of nanoprobes for Raman imaging of dual cancer biomarkers in living cells. Sensors and Actuators B: Chemical, 2021, 330, 129319.                                      | 7.8  | 11        |
| 79 | Ultra-trace enriching biosensing in nanoliter sample. Biosensors and Bioelectronics, 2022, 210, 114297.                                                                                                        | 10.1 | 11        |
| 80 | Tunable Thermoresponsive Flexible Films for Adaptive Temperature Management and Visual Temperature Monitoring. ACS Applied Materials & amp; Interfaces, 2022, 14, 29284-29291.                                 | 8.0  | 11        |
| 81 | Dynamic Assembly of Microspheres under an Ultrasound Field. Chemistry - an Asian Journal, 2019, 14, 2440-2444.                                                                                                 | 3.3  | 10        |
| 82 | On-demand mixing and dispersion in mini-pillar based microdroplets. Nanoscale, 2021, 13, 739-745.                                                                                                              | 5.6  | 9         |
| 83 | Coexisting Cooperative Cognitive Microâ€{Nanorobots. Chemistry - an Asian Journal, 2019, 14, 2357-2368.                                                                                                        | 3.3  | 8         |
| 84 | Amperometric Sarcosine Biosensors Based on Electrodeposited Conductive Films Contain<br>Indoleâ€6â€carboxylic Acid. Electroanalysis, 2022, 34, 345-351.                                                        | 2.9  | 8         |
| 85 | Miniâ€pillar Based Multiâ€channel Electrochemical Platform for Studying the Multifactor Silver<br>Electrodeposition. Electroanalysis, 2021, 33, 2401-2405.                                                     | 2.9  | 7         |
| 86 | Wireless USB-like electrochemical platform for individual electrochemical sensing in microdroplets.<br>Analytica Chimica Acta, 2022, 1197, 339526.                                                             | 5.4  | 7         |
| 87 | Jigsaw-like mini-pillar platform for multi-mode biosensing. Chinese Chemical Letters, 2022, 33, 3879-3882.                                                                                                     | 9.0  | 7         |
| 88 | Microscale synthesis system for regulation and prediction of metal organic framework morphologies. Materials Today Chemistry, 2022, 23, 100767.                                                                | 3.5  | 5         |
| 89 | Microâ€/Nanomachines: Fuelâ€Free Synthetic Microâ€/Nanomachines (Adv. Mater. 9/2017). Advanced<br>Materials, 2017, 29, .                                                                                       | 21.0 | 4         |
| 90 | Bioinspired Transport Surface Driven by Air Flow. Advanced Materials Interfaces, 2020, 7, 2001331.                                                                                                             | 3.7  | 4         |

Tailin Xu

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | Cancer Cells: Underwater-Transparent Nanodendritic Coatings for Directly Monitoring Cancer Cells<br>(Adv. Healthcare Mater. 3/2014). Advanced Healthcare Materials, 2014, 3, 460-460. | 7.6  | 1         |
| 92 | Railâ€Assisted Dynamic Assembly of Metallic Nanowires. Advanced Intelligent Systems, 2019, 1, 1900100.                                                                                | 6.1  | 1         |
| 93 | Controlling the micro/nanomotors motion and their application in precision medicine. Scientia Sinica Chimica, 2017, 47, 29-38.                                                        | 0.4  | 1         |
| 94 | Editorial: Integrated Point-of-Care Testing (POCT) Systems: Recent Progress and Applications.<br>Frontiers in Bioengineering and Biotechnology, 2022, 10, 851675.                     | 4.1  | 1         |
| 95 | Cancer Therapy: Cancer Cell Membrane Camouflaged Semiâ€Yolk@Spikyâ€Shell Nanomotor for Enhanced<br>Cell Adhesion and Synergistic Therapy (Small 39/2020). Small, 2020, 16, 2070215.   | 10.0 | 0         |
| 96 | (Keynote) Artificial Intelligence Biosensors: Challenges and Prospects. ECS Meeting Abstracts, 2021, MA2021-01, 1385-1385.                                                            | 0.0  | 0         |
| 97 | (Invited) Intelligent Wearable Biosensors—Progress and Problem. ECS Meeting Abstracts, 2020,<br>MA2020-01, 2006-2006.                                                                 | 0.0  | 0         |