
Jin-Zhi Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9114052/publications.pdf Version: 2024-02-01

_____Ли_7н⊥ Du

#	Article	IF	CITATIONS
1	A polyamidoamine (PAMAM) derivative dendrimer with high loading capacity of TLR7/8 agonist for improved cancer immunotherapy. Nano Research, 2022, 15, 510-518.	10.4	12
2	An Injectable Nanocomposite Hydrogel Improves Tumor Penetration and Cancer Treatment Efficacy. Acta Biomaterialia, 2022, 147, 235-244.	8.3	14
3	A polymeric nanoformulation improves the bioavailability and efficacy of sorafenib for hepatocellular carcinoma therapy. Biomaterials Science, 2021, 9, 2508-2518.	5.4	5
4	Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery. Nano Research, 2021, 14, 2689-2696.	10.4	35
5	Immunomodulating nano-adaptors potentiate antibody-based cancer immunotherapy. Nature Communications, 2021, 12, 1359.	12.8	64
6	Biomimetic co-assembled nanodrug of doxorubicin and berberine suppresses chemotherapy-exacerbated breast cancer metastasis. Biomaterials, 2021, 271, 120716.	11.4	49
7	Coordination and Redox Dualâ€Responsive Mesoporous Organosilica Nanoparticles Amplify Immunogenic Cell Death for Cancer Chemoimmunotherapy. Small, 2021, 17, e2100006.	10.0	40
8	A Tumorâ€Penetrating Nanomedicine Improves the Chemoimmunotherapy of Pancreatic Cancer. Small, 2021, 17, e2101208.	10.0	22
9	Chemoimmunotherapy: Coordination and Redox Dualâ€Responsive Mesoporous Organosilica Nanoparticles Amplify Immunogenic Cell Death for Cancer Chemoimmunotherapy (Small 26/2021). Small, 2021, 17, 2170130.	10.0	2
10	Angiopep-2 conjugated nanoparticles loaded with doxorubicin for the treatment of primary central nervous system lymphoma. Biomaterials Science, 2020, 8, 1290-1297.	5.4	25
11	Barriers for Tumor Drug Delivery. , 2020, , 5-26.		1
12	Nanoparticleâ€Enabled Dual Modulation of Phagocytic Signals to Improve Macrophageâ€Mediated Cancer Immunotherapy. Small, 2020, 16, e2004240.	10.0	46
13	Biofunctional Janus particles promote phagocytosis of tumor cells by macrophages. Chemical Science, 2020, 11, 5323-5327.	7.4	12
14	Investigation of the in vivo integrity of polymeric micelles via large Stokes shift fluorophore-based FRET. Journal of Controlled Release, 2020, 324, 47-54.	9.9	24
15	Engineering nanoparticles to tackle tumor barriers. Journal of Materials Chemistry B, 2020, 8, 6686-6696.	5.8	10
16	Programmable Delivery of Immune Adjuvant to Tumor-Infiltrating Dendritic Cells for Cancer Immunotherapy. Nano Letters, 2020, 20, 4882-4889.	9.1	50
17	Nanoenabled Reversal of IDO1-Mediated Immunosuppression Synergizes with Immunogenic Chemotherapy for Improved Cancer Therapy. Nano Letters, 2019, 19, 5356-5365.	9.1	87
18	Enhanced Primary Tumor Penetration Facilitates Nanoparticle Draining into Lymph Nodes after Systemic Injection for Tumor Metastasis Inhibition. ACS Nano, 2019, 13, 8648-8658.	14.6	55

Јім-Ζні Du

#	Article	IF	CITATIONS
19	Intratumor Performance and Therapeutic Efficacy of PAMAM Dendrimers Carried by Clustered Nanoparticles. Nano Letters, 2019, 19, 8947-8955.	9.1	41
20	Multi-stimuli responsive poly(amidoamine) dendrimers with peripheral <i>N</i> -dialkylaminoethyl carbamate moieties. Polymer Chemistry, 2019, 10, 656-662.	3.9	15
21	Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1519.	6.1	180
22	The effect of surface charge on oral absorption of polymeric nanoparticles. Biomaterials Science, 2018, 6, 642-650.	5.4	96
23	Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine. Accounts of Chemical Research, 2018, 51, 2848-2856.	15.6	195
24	Tumor Acidity/NIR Controlled Interaction of Transformable Nanoparticle with Biological Systems for Cancer Therapy. Nano Letters, 2017, 17, 2871-2878.	9.1	111
25	Spatial Targeting of Tumor-Associated Macrophages and Tumor Cells with a pH-Sensitive Cluster Nanocarrier for Cancer Chemoimmunotherapy. Nano Letters, 2017, 17, 3822-3829.	9.1	158
26	Facile Generation of Tumorâ€pH‣abile Linkageâ€Bridged Block Copolymers for Chemotherapeutic Delivery. Angewandte Chemie, 2016, 128, 1022-1026.	2.0	35
27	Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today, 2016, 11, 133-144.	11.9	208
28	Smart Superstructures with Ultrahigh pH-Sensitivity for Targeting Acidic Tumor Microenvironment: Instantaneous Size Switching and Improved Tumor Penetration. ACS Nano, 2016, 10, 6753-6761.	14.6	461
29	Facile Generation of Tumorâ€pH‣abile Linkageâ€Bridged Block Copolymers for Chemotherapeutic Delivery. Angewandte Chemie - International Edition, 2016, 55, 1010-1014.	13.8	133
30	Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4164-4169.	7.1	617
31	Stimuli-responsive nanoparticles for targeting the tumor microenvironment. Journal of Controlled Release, 2015, 219, 205-214.	9.9	271
32	Multiresponsive Polymer Assemblies Achieved by a Subtle Chain Terminal Modification. Chinese Journal of Chemistry, 2014, 32, 51-56.	4.9	2
33	Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy. Biotechnology Advances, 2014, 32, 789-803.	11.7	171
34	Surface-modulated and thermoresponsive polyphosphoester nanoparticles for enhanced intracellular drug delivery. Science China Chemistry, 2014, 57, 579-585.	8.2	22
35	Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials, 2014, 35, 836-845.	11.4	150
36	Shell-detachable nanoparticles based on a light-responsive amphiphile for enhanced siRNA delivery. RSC Advances, 2014, 4, 1961-1964.	3.6	20

Јім-Ζні Du

#	Article	IF	CITATIONS
37	Doxorubicin Conjugate of Poly(Ethylene Glycol)â€≺i>Blockâ€Polyphosphoester for Cancer Therapy. Advanced Healthcare Materials, 2014, 3, 261-272.	7.6	64
38	Sheddable Ternary Nanoparticles for Tumor Acidity-Targeted siRNA Delivery. ACS Nano, 2012, 6, 771-781.	14.6	265
39	Biocompatible and functionalizable polyphosphate nanogel with a branched structure. Journal of Materials Chemistry, 2012, 22, 9322.	6.7	26
40	Micelle-to-vesicle morphological transition via light-induced rapid hydrophilic arm detachment from a star polymer. Chemical Communications, 2012, 48, 1257-1259.	4.1	23
41	Two consecutive click reactions as a general route to functional cyclic polyesters. Chemical Communications, 2012, 48, 570-572.	4.1	27
42	Surface Charge Switchable Nanoparticles Based on Zwitterionic Polymer for Enhanced Drug Delivery to Tumor. Advanced Materials, 2012, 24, 5476-5480.	21.0	461
43	Simultaneous Delivery of siRNA and Paclitaxel <i>via</i> a "Two-in-One―Micelleplex Promotes Synergistic Tumor Suppression. ACS Nano, 2011, 5, 1483-1494.	14.6	387
44	Tailor-Made Dual pH-Sensitive Polymer–Doxorubicin Nanoparticles for Efficient Anticancer Drug Delivery. Journal of the American Chemical Society, 2011, 133, 17560-17563.	13.7	1,063
45	A biodegradable amphiphilic and cationic triblock copolymer for the delivery of siRNA targeting the acid ceramidase gene for cancer therapy. Biomaterials, 2011, 32, 3124-3133.	11.4	105
46	Phosphoester modified poly(ethylenimine) as efficient and low cytotoxic genevectors. Science China Chemistry, 2011, 54, 351-358.	8.2	6
47	A Tumorâ€Acidityâ€Activated Chargeâ€Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoralâ€Cell Uptake and Drug Delivery. Angewandte Chemie - International Edition, 2010, 49, 3621-3626.	13.8	459
48	Brush-shaped polycation with poly(ethylenimine)-b-poly(ethylene glycol) side chains as highly efficient gene delivery vector. International Journal of Pharmaceutics, 2010, 392, 118-126.	5.2	25
49	Gold Nanoparticles Capped with Polyethyleneimine for Enhanced siRNA Delivery. Small, 2010, 6, 239-246.	10.0	269
50	Electrosprayed core–shell microspheres for protein delivery. Chemical Communications, 2010, 46, 4743.	4.1	33
51	Engineering nanoscopic hydrogels via photo-crosslinking salt-induced polymer assembly for targeted drug delivery. Chemical Communications, 2010, 46, 3520.	4.1	35
52	Recent Progress in Polyphosphoesters: From Controlled Synthesis to Biomedical Applications. Macromolecular Bioscience, 2009, 9, 1154-1164.	4.1	192
53	Shell-Detachable Micelles Based on Disulfide-Linked Block Copolymer As Potential Carrier for Intracellular Drug Delivery. Bioconjugate Chemistry, 2009, 20, 1095-1099.	3.6	243

Evaluation of Polymeric Micelles from Brush Polymer with Poly($\hat{\mu}$ -caprolactone)-<i>b</i>-Poly(ethylene) Tj ETQq0 0.0 rgBT /Overlock 10 145 cm = 1000 cm

Јім-Ζні Du

#	Article	IF	CITATIONS
55	SYTHESIS AND CHARACTERIZATION OF POLYETHYLENIMINE-POLY(ETHYLENE GLYCOL) DIACRYLATE NANOGEL AS A siRNA CARRIER. Acta Polymerica Sinica, 2009, 009, 257-263.	0.0	4
56	Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials, 2008, 29, 4348-4355.	11.4	227
57	Synthesis of Amphiphilic ABC 3-Miktoarm Star Terpolymer by Combination of Ring-Opening Polymerization and "Click―Chemistry. Macromolecules, 2008, 41, 8620-8625.	4.8	77
58	Functionalized Diblock Copolymer of Poly(ε-caprolactone) and Polyphosphoester Bearing Hydroxyl Pendant Groups: Synthesis, Characterization, and Self-Assembly. Macromolecules, 2008, 41, 6935-6941.	4.8	50
59	Synthesis and Characterization of Photo-Cross-Linked Hydrogels Based on Biodegradable Polyphosphoesters and Poly(ethylene glycol) Copolymers. Biomacromolecules, 2007, 8, 3375-3381.	5.4	81
60	Kinetics and Mechanism of 2-Ethoxy-2-oxo-1,3,2-dioxaphospholane Polymerization Initiated by Stannous Octoate. Macromolecules, 2006, 39, 6825-6831.	4.8	96
61	Synthesis and Micellization of Amphiphilic Brushâ	5.4	80
62	An Intracellular pH-Actuated Polymer for Robust Cytosolic Protein Delivery. CCS Chemistry, 0, , 431-442.	7.8	10