Shashank Reddy Pinnapireddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9113875/publications.pdf Version: 2024-02-01

		136950	123424
113	4,279	32	61
papers	citations	h-index	g-index
113	113	113	5419
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. Journal of Controlled Release, 2006, 112, 257-270.	9.9	265
2	Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: Establishment of structure–activity relationships in vitro. Journal of Controlled Release, 2008, 125, 145-154.	9.9	229
3	Nonbilayer phase of lipoplex–membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Molecular Therapy, 2005, 11, 801-810.	8.2	220
4	Liposome–polyethylenimine complexes for enhanced DNA and siRNA delivery. Biomaterials, 2010, 31, 6892-6900.	11.4	183
5	Self-Assembled Polyelectrolyte Nanocomplexes between Chitosan Derivatives and Insulin. Journal of Pharmaceutical Sciences, 2006, 95, 1035-1048.	3.3	161
6	Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 2-13.	4.3	152
7	Phase Behavior of Cationic Amphiphiles and Their Mixtures with Helper Lipid Influences Lipoplex Shape, DNA Translocation, and Transfection Efficiency. Biophysical Journal, 2002, 83, 2096-2108.	0.5	119
8	Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. Journal of Controlled Release, 2007, 119, 41-51.	9.9	114
9	Transfection with different colloidal systems: comparison of solid lipid nanoparticles and liposomes. Journal of Controlled Release, 2004, 97, 321-332.	9.9	110
10	The potential of glycol chitosan nanoparticles as carrier for low water soluble drugs. International Journal of Pharmaceutics, 2009, 375, 97-106.	5.2	106
11	Biophysical investigation of pulmonary surfactant surface properties upon contact with polymeric nanoparticles in vitro. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 341-350.	3.3	97
12	Lipid coated chitosan-DNA nanoparticles for enhanced gene delivery. International Journal of Pharmaceutics, 2018, 535, 473-479.	5.2	92
13	Charged nanoparticles as protein delivery systems: A feasibility study using lysozyme as model protein. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 31-42.	4.3	84
14	Composite liposome-PEI/nucleic acid lipopolyplexes for safe and efficient gene delivery and gene knockdown. Colloids and Surfaces B: Biointerfaces, 2017, 158, 93-101.	5.0	78
15	Interference of serum with lipoplex–cell interaction: modulation of intracellular processing. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1560, 25-36.	2.6	75
16	Photodynamic Therapy of Ovarian Carcinoma Cells with Curcumin-Loaded Biodegradable Polymeric Nanoparticles. Pharmaceutics, 2019, 11, 282.	4.5	72
17	Photodynamic therapy – hypericin tetraether liposome conjugates and their antitumor and antiangiogenic activity. Drug Delivery, 2019, 26, 23-33.	5.7	70
18	Atomic Force Microscopy and Analytical Ultracentrifugation for Probing Nanomaterial Protein Interactions. ACS Nano, 2012, 6, 4603-4614.	14.6	69

#	Article	IF	CITATIONS
19	Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids and Surfaces B: Biointerfaces, 2019, 178, 460-468.	5.0	66
20	Storage stability of optimal liposome–polyethylenimine complexes (lipopolyplexes) for DNA or siRNA delivery. Acta Biomaterialia, 2014, 10, 2663-2673.	8.3	65
21	Low level LED photodynamic therapy using curcumin loaded tetraether liposomes. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 126, 233-241.	4.3	63
22	Methotrexate-Loaded Chitosan- and Glycolchitosan-Based Nanoparticles: A Promising Strategy for the Administration of the Anticancer Drug to Brain Tumors. AAPS PharmSciTech, 2011, 12, 1302-1311.	3.3	61
23	Adhesion characteristics and stability assessment of lectin-modified liposomes for site-specific drug delivery. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 242-249.	2.6	60
24	Antibacterial and anti-encrustation biodegradable polymer coating for urinary catheter. International Journal of Pharmaceutics, 2017, 531, 205-214.	5.2	58
25	Development and characterization of new nanoscaled ultrasound active lipid dispersions as contrast agents. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 430-437.	4.3	57
26	Liposome-polyethylenimine complexes (DPPC-PEI lipopolyplexes) for therapeutic siRNA delivery in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 209-218.	3.3	55
27	Preparation and characterization of chitosan and trimethyl-chitosanmodified poly-(ε-caprolactone) nanoparticles as DNA carriers. AAPS PharmSciTech, 2005, 6, E22-E30.	3.3	53
28	Bipolar tetraether lipids derived from thermoacidophilic archaeon Sulfolobus acidocaldarius for membrane stabilization of chlorin e6 based liposomes for photodynamic therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 88-98.	4.3	53
29	Hair follicle targeting with curcumin nanocrystals: Influence of the formulation properties on the penetration efficacy. Journal of Controlled Release, 2021, 329, 598-613.	9.9	49
30	Enhanced efficacy and drug delivery with lipid coated mesoporous silica nanoparticles in cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 165, 31-40.	4.3	41
31	Hypericin inclusion complexes encapsulated in liposomes for antimicrobial photodynamic therapy. International Journal of Pharmaceutics, 2019, 570, 118666.	5.2	36
32	Preparation and Characterization of Curcumin Loaded Chitosan Nanoparticles for Photodynamic Therapy. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700709.	1.8	35
33	Spray dried curcumin loaded nanoparticles for antimicrobial photodynamic therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 531-539.	4.3	35
34	The Influence of Physicochemical Parameters on the Efficacy of Non-Viral DNA Transfection Complexes: A Comparative Study. Journal of Nanoscience and Nanotechnology, 2006, 6, 2776-2782.	0.9	34
35	Chitosan-Coated PLGA Nanoparticles Loaded with Peganum harmala Alkaloids with Promising Antibacterial and Wound Healing Activities. Nanomaterials, 2021, 11, 2438.	4.1	32
36	Nano spray dried antibacterial coatings for dental implants. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 59-67.	4.3	31

#	Article	IF	CITATIONS
37	Development of inhalable curcumin loaded Nano-in-Microparticles for bronchoscopic photodynamic therapy. European Journal of Pharmaceutical Sciences, 2019, 132, 63-71.	4.0	30
38	PEGylated Chitosan Nanoparticles Encapsulating Ascorbic Acid and Oxaliplatin Exhibit Dramatic Apoptotic Effects against Breast Cancer Cells. Pharmaceutics, 2022, 14, 407.	4.5	30
39	Covalent immobilization of lysozyme onto woven and knitted crimped polyethylene terephthalate grafts to minimize the adhesion of broad spectrum pathogens. Materials Science and Engineering C, 2016, 58, 78-87.	7.3	29
40	Lipodendriplexes: A promising nanocarrier for enhanced gene delivery with minimal cytotoxicity. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 135, 72-82.	4.3	29
41	Sensitivity of Papilloma Virus-Associated Cell Lines to Photodynamic Therapy with Curcumin-Loaded Liposomes. Cancers, 2020, 12, 3278.	3.7	25
42	Biocompatible indocyanine green loaded PLA nanofibers for in situ antimicrobial photodynamic therapy. Materials Science and Engineering C, 2020, 115, 111068.	7.3	25
43	Characterization of the interactions between various hexadecylmannoside–phospholipid model membranes with the lectin Concanavalin A. Physical Chemistry Chemical Physics, 2000, 2, 4609-4614.	2.8	24
44	Wavelength dependent photo-cytotoxicity to ovarian carcinoma cells using temoporfin loaded tetraether liposomes as efficient drug delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 150, 50-65.	4.3	24
45	Hypericin Loaded Liposomes for Antiâ€Microbial Photodynamic Therapy of Gramâ€Positive Bacteria. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700837.	1.8	23
46	Poly(d,l-lactide)/polyethylene glycol micro/nanofiber mats as paclitaxel-eluting carriers: preparation and characterization of fibers, in vitro drug release, antiangiogenic activity and tumor recurrence prevention. Materials Science and Engineering C, 2019, 98, 982-993.	7.3	23
47	Development of expanded polytetrafluoroethylene cardiovascular graft platform based on immobilization of poly lactic- co -glycolic acid nanoparticles using a wet chemical modification technique. International Journal of Pharmaceutics, 2017, 529, 238-244.	5.2	22
48	Aspherical, Nanostructured Microparticles for Targeted Gene Delivery to Alveolar Macrophages. Advanced Healthcare Materials, 2017, 6, 1700478.	7.6	21
49	Transfection Studies with Colloidal Systems Containing Highly Purified Bipolar Tetraether Lipids from <i>Sulfolobus acidocaldarius</i> . Archaea, 2017, 2017, 1-12.	2.3	21
50	Potent Cytotoxicity of Four Cameroonian Plant Extracts on Different Cancer Cell Lines. Pharmaceuticals, 2020, 13, 357.	3.8	21
51	ADAM 8 as a novel target for doxorubicin delivery to TNBC cells using magnetic thermosensitive liposomes. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 390-400.	4.3	21
52	Cucumber-Derived Exosome-like Vesicles and PlantCrystals for Improved Dermal Drug Delivery. Pharmaceutics, 2022, 14, 476.	4.5	20
53	A chorioallantoic membrane model for the determination of anti-angiogenic effects of imatinib. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 711-715.	4.3	19
54	Contact-Triggered Lipofection from Multilayer Films Designed as Surfaces for in Situ Transfection Strategies in Tissue Engineering. ACS Applied Materials & Interfaces, 2020, 12, 8963-8977.	8.0	19

#	Article	IF	CITATIONS
55	Dermal Penetration Analysis of Curcumin in an ex vivo Porcine Ear Model Using Epifluorescence Microscopy and Digital Image Processing. Skin Pharmacology and Physiology, 2021, 34, 281-299.	2.5	19
56	Lipoparticles for Synergistic Chemo-Photodynamic Therapy to Ovarian Carcinoma Cells: In vitro and in vivo Assessments. International Journal of Nanomedicine, 2021, Volume 16, 951-976.	6.7	19
57	Lipodendriplexes mediated enhanced gene delivery: a cellular to pre-clinical investigation. Scientific Reports, 2020, 10, 21446.	3.3	18
58	Photo-responsive tetraether lipids based vesicles for prophyrin mediated vascular targeting and direct phototherapy. Colloids and Surfaces B: Biointerfaces, 2017, 159, 720-728.	5.0	18
59	Thermosensitive liposomes encapsulating hypericin: Characterization and photodynamic efficiency. International Journal of Pharmaceutics, 2021, 609, 121195.	5.2	18
60	Cooperation between Lateral Ligand Mobility and Accessibility for Receptor Recognition in Selectin-Induced Cell Rolling,. Biochemistry, 2002, 41, 4704-4712.	2.5	17
61	Real-time, label-free monitoring of cell viability based on cell adhesion measurements with an atomic force microscope. Journal of Nanobiotechnology, 2017, 15, 23.	9.1	17
62	Malonic acid based cationic lipids – The way to highly efficient DNA-carriers. Advances in Colloid and Interface Science, 2017, 248, 20-34.	14.7	17
63	Resuspendable Powders of Lyophilized Chalcogen Particles with Activity against Microorganisms. Antioxidants, 2018, 7, 23.	5.1	17
64	Magnetic resonance activatable thermosensitive liposomes for controlled doxorubicin delivery. Materials Science and Engineering C, 2020, 115, 111116.	7.3	17
65	The chorioallantoic membrane as a bio-barrier model for the evaluation of nanoscale drug delivery systems for tumour therapy. Advanced Drug Delivery Reviews, 2021, 174, 317-336.	13.7	17
66	Ultrasound-Responsive Smart Drug Delivery System of Lipid Coated Mesoporous Silica Nanoparticles. Pharmaceutics, 2021, 13, 1396.	4.5	17
67	Synergistic effects of ultrasound and photodynamic therapy leading to biofilm eradication on polyurethane catheter surfaces modified with hypericin nanoformulations. Materials Science and Engineering C, 2019, 103, 109749.	7.3	16
68	Improvement of Pulmonary Photodynamic Therapy: Nebulisation of Curcumin-Loaded Tetraether Liposomes. Pharmaceutics, 2021, 13, 1243.	4.5	16
69	The in vitro stability of air-filled polybutylcyanoacrylate microparticles. Biomaterials, 2006, 27, 3549-59.	11.4	15
70	A New Drug Vehicle - Lipid Coated Biodegradable Nanoparticles. Advances in Science and Technology, 0, , .	0.2	15
71	Correlation of structure and echogenicity of nanoscaled ultrasound contrast agents in vitro. Colloids and Surfaces B: Biointerfaces, 2014, 117, 206-215.	5.0	15
72	Multifunctional network-structured film coating for woven and knitted polyethylene terephthalate against cardiovascular graft-associated infections. International Journal of Pharmaceutics, 2015, 485, 270-276.	5.2	15

#	Article	IF	CITATIONS
73	Structures of malonic acid diamide/phospholipid composites and their lipoplexes. Soft Matter, 2016, 12, 5854-5866.	2.7	15
74	The Use of Artificial Gel Forming Bolalipids as Novel Formulations in Antimicrobial and Antifungal Therapy. Pharmaceutics, 2019, 11, 307.	4.5	15
75	Surface tailored zein as a novel delivery system for hypericin: Application in photodynamic therapy. Materials Science and Engineering C, 2021, 129, 112420.	7.3	15
76	Thermoresponsive Liposomes for Photo-Triggered Release of Hypericin Cyclodextrin Inclusion Complex for Efficient Antimicrobial Photodynamic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 31525-31540.	8.0	15
77	Investigation of Binary Lipid Mixtures of a Three-Chain Cationic Lipid with Phospholipids Suitable for Gene Delivery. Bioconjugate Chemistry, 2015, 26, 2461-2473.	3.6	14
78	Nano spray drying: A novel technique to prepare well-defined surface coatings for medical implants. Journal of Drug Delivery Science and Technology, 2018, 48, 145-151.	3.0	14
79	Stabilized tetraether lipids based particles guided prophyrins photodynamic therapy. Drug Delivery, 2018, 25, 1526-1536.	5.7	14
80	Selective anti-ErbB3 aptamer modified sorafenib microparticles: In vitro and in vivo toxicity assessment. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 145, 42-53.	4.3	14
81	Downregulation of MDR 1 gene contributes to tyrosine kinase inhibitor induce apoptosis and reduction in tumor metastasis: A gravity to space investigation. International Journal of Pharmaceutics, 2020, 591, 119993.	5.2	14
82	Parietin Cyclodextrin-Inclusion Complex as an Effective Formulation for Bacterial Photoinactivation. Pharmaceutics, 2022, 14, 357.	4.5	14
83	In situ intravenous photodynamic therapy for the systemic eradication of blood stream infections. Photochemical and Photobiological Sciences, 2019, 18, 304-308.	2.9	13
84	Photodynamic and antiangiogenic activities of parietin liposomes in triple negative breast cancer. Materials Science and Engineering C, 2022, 134, 112543.	7.3	13
85	The application of STEP-technology® for particle and protein dispersion detection studies in biopharmaceutical research. International Journal of Pharmaceutics, 2018, 543, 257-268.	5.2	12
86	Establishment of a Synthetic <i>In Vitro</i> Lung Surfactant Model for Particle Interaction Studies on a Langmuir Film Balance. Langmuir, 2020, 36, 4808-4819.	3.5	12
87	A novel method for designing nanostructured polymer surfaces for reduced bacteria adhesion. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1279-1283.	1.8	11
88	Overcoming the polycation dilemma – Explorative studies to characterise the efficiency and biocompatibility of newly designed lipofection reagents. International Journal of Pharmaceutics, 2018, 541, 81-92.	5.2	11
89	Multilayer Bacteriostatic Coating for Surface Modified Titanium Implants. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700844.	1.8	11
90	Photodynamic inactivation of circulating tumor cells: An innovative approach against metastatic cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 157, 38-46.	4.3	11

#	Article	IF	CITATIONS
91	Indocyanine Green Loaded PLGA Film Coated Coronary Stents for Photo-Triggered in situ Biofilm Eradication. Colloids and Interface Science Communications, 2018, 27, 35-39.	4.1	10
92	Elasticity and phase behaviour of biomimetic membrane systems containing tetraether archaeal lipids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 124974.	4.7	9
93	Fast therapeutic DNA internalization – A high potential transfection system based on a peptide mimicking cationic lipid. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 118, 38-47.	4.3	8
94	Immobilization and characterization of PLGA nanoparticles on polyethylene terephthalate cardiovascular grafts for local drug therapy of associated graft complications. Journal of Drug Delivery Science and Technology, 2018, 47, 144-150.	3.0	8
95	Glycosylated Artificial Virus-Like Hybrid Vectors for Advanced Gene Delivery. Polymers, 2019, 11, 243.	4.5	8
96	A Novel Microparticulate Formulation with Allicin In Situ Synthesis. Journal of Pharmaceutics & Drug Delivery Research, 2016, 05, .	0.0	8
97	A functional immobilization of semiconductor nanoparticles (quantum dots) on nanoporous aluminium oxide. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 872-877.	1.8	7
98	Nanostructured medical device coatings based on self-assembled poly(lactic-co-glycolic acid) nanoparticles. Materials Science and Engineering C, 2013, 33, 3018-3024.	7.3	7
99	Nucleic acid carrier composed of a branched fatty acid lysine conjugate—Interaction studies with blood components. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110547.	5.0	7
100	Comparison of Tanaka lipid mixture with natural surfactant Alveofact to study nanoparticle interactions on Langmuir film balance. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110750.	5.0	7
101	Targeted ErbB3 cancer therapy: A synergistic approach to effectively combat cancer. International Journal of Pharmaceutics, 2020, 575, 118961.	5.2	7
102	<i>In Ovo</i> Testing Method for Inhalants on a Chorio-Allantoic Membrane. ACS Applied Bio Materials, 2021, 4, 7764-7768.	4.6	7
103	Thrombinâ€Inhibiting Anticoagulant Liposomes: Development and Characterization. ChemMedChem, 2016, 11, 340-349.	3.2	6
104	Selective interactions of concanavalin A-modified tetraether lipid liposomes. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1985-1989.	0.8	5
105	Nanoparticles and Liposomes for the Surface Modification of Implants: A Comparative Study of Spraying and Dipping Techniques. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700847.	1.8	5
106	Development and Characterization of Ultrasound Activated Lipopolyplexes for Enhanced Transfection by Low Frequency Ultrasound in In Vitro Tumor Model. Macromolecular Bioscience, 2020, 20, e2000173.	4.1	5
107	The chorioallantoic membrane assay is a promising ex vivo model system for the study of vascular anomalies. In Vivo, 2013, 27, 701-5.	1.3	5
108	Lipid coated chitosan microparticles as protein carriers. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1978-1984.	0.8	3

#	Article	IF	CITATIONS
109	A triple chain polycationic peptide-mimicking amphiphile – efficient DNA-transfer without co-lipids. Biomaterials Science, 2020, 8, 232-249.	5.4	3
110	Photo-Enhanced Delivery of Genetic Material Using Curcumin Loaded Composite Nanocarriers. , 2017, 2, .		3
111	Efficient Transfection of Large Plasmids Encoding HIV-1 into Human Cells—A High Potential Transfection System Based on a Peptide Mimicking Cationic Lipid. Pharmaceutics, 2020, 12, 805.	4.5	2
112	Investigating 3R In Vivo Approaches for Bioâ€Distribution and Efficacy Evaluation of Nucleic Acid Nanocarriers: Studies on Peptideâ€Mimicking Ionizable Lipid. Small, 2022, , 2107768.	10.0	1
113	Co-delivery of carbonic anhydrase IX inhibitor and doxorubicin as a promising approach to address hypoxia-induced chemoresistance. Drug Delivery, 2022, 29, 2072-2085.	5.7	1