
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9113713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews, 2010, 110, 3479-3500.	23.0	4,701
2	Developing fibrillated cellulose as a sustainable technological material. Nature, 2021, 590, 47-56.	13.7	711
3	Nanocellulose properties and applications in colloids and interfaces. Current Opinion in Colloid and Interface Science, 2014, 19, 383-396.	3.4	501
4	Advanced Materials through Assembly of Nanocelluloses. Advanced Materials, 2018, 30, e1703779.	11.1	493
5	Nanofiber Composites of Polyvinyl Alcohol and Cellulose Nanocrystals: Manufacture and Characterization. Biomacromolecules, 2010, 11, 674-681.	2.6	491

Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl) Tj ETQq000 rgBT/Overlock 10 Tf 50 473

7	A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose, 2011, 18, 1097-1111.	2.4	469
8	Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chemistry, 2015, 17, 1853-1866.	4.6	380
9	Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technology, 2013, 133, 270-278.	4.8	316
10	Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. Journal of Colloid and Interface Science, 2012, 369, 202-209.	5.0	315
11	Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: Alternative to Pt-C for alkaline fuel cells. Applied Catalysis B: Environmental, 2017, 204, 394-402.	10.8	294
12	The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose, 2010, 17, 835-848.	2.4	282
13	Advanced Biomassâ€Derived Electrocatalysts for the Oxygen Reduction Reaction. Advanced Materials, 2018, 30, e1703691.	11.1	274
14	Poly(<i>N</i> -isopropylacrylamide) Brushes Grafted from Cellulose Nanocrystals via Surface-Initiated Single-Electron Transfer Living Radical Polymerization. Biomacromolecules, 2010, 11, 2683-2691.	2.6	261
15	The effect of chemical composition on microfibrillar cellulose films from wood pulps: Mechanical processing and physical properties. Bioresource Technology, 2010, 101, 5961-5968.	4.8	253
16	Pickering emulsions by combining cellulose nanofibrils and nanocrystals: phase behavior and depletion stabilization. Green Chemistry, 2018, 20, 1571-1582.	4.6	243
17	Reinforcing Poly(ε-caprolactone) Nanofibers with Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2009, 1, 1996-2004.	4.0	235
18	Spherical lignin particles: a review on their sustainability and applications. Green Chemistry, 2020, 22, 2712-2733.	4.6	228

#	Article	IF	CITATIONS
19	Cellulose Nanofibril Film as a Piezoelectric Sensor Material. ACS Applied Materials & Interfaces, 2016, 8, 15607-15614.	4.0	219
20	Behavior of nanocelluloses at interfaces. Current Opinion in Colloid and Interface Science, 2017, 29, 83-95.	3.4	214
21	Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydrate Polymers, 2012, 89, 1033-1037.	5.1	208
22	Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose, 2012, 19, 2179-2193.	2.4	196
23	Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: Production of nanofibrillated cellulose and EPFBF nanopaper. Bioresource Technology, 2012, 125, 249-255.	4.8	190
24	Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability. Food Hydrocolloids, 2019, 96, 699-708.	5.6	190
25	Nanocellulose in Thin Films, Coatings, and Plies for Packaging Applications: A Review. BioResources, 2016, 12, 2143-2233.	0.5	189
26	Piezoelectric Effect of Cellulose Nanocrystals Thin Films. ACS Macro Letters, 2012, 1, 867-870.	2.3	185
27	Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers. Journal of Applied Polymer Science, 2009, 113, 927-935.	1.3	182
28	High-Throughput Synthesis of Lignin Particles (â^¼30 nm to â^¼2 μm) via Aerosol Flow Reactor: Size Fractionation and Utilization in Pickering Emulsions. ACS Applied Materials & Interfaces, 2016, 8, 23302-23310.	4.0	180
29	Modification of Cellulose Films by Adsorption of CMC and Chitosan for Controlled Attachment of Biomolecules. Biomacromolecules, 2011, 12, 4311-4318.	2.6	174
30	Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions. Chemical Engineering Journal, 2021, 408, 127306.	6.6	174
31	Lignin-Based Electrospun Nanofibers Reinforced with Cellulose Nanocrystals. Biomacromolecules, 2012, 13, 918-926.	2.6	171
32	Transformation of lignocellulosic biomass during torrefaction. Journal of Analytical and Applied Pyrolysis, 2013, 100, 199-206.	2.6	168
33	On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydrate Polymers, 2016, 143, 327-335.	5.1	160
34	Enzymatic Kinetics of Cellulose Hydrolysis:  A QCM-D Study. Langmuir, 2008, 24, 3880-3887.	1.6	158
35	Ambientâ€Dried Cellulose Nanofibril Aerogel Membranes with High Tensile Strength and Their Use for Aerosol Collection and Templates for Transparent, Flexible Devices. Advanced Functional Materials, 2015, 25, 6618-6626.	7.8	155
36	Cellulose Nanofibrils. Journal of Renewable Materials, 2013, 1, 195-211.	1.1	152

3

#	Article	IF	CITATIONS
37	PAPER CHEMISTRY: Approaching super-hydrophobicity from cellulosic materials: A Review. Nordic Pulp and Paper Research Journal, 2013, 28, 216-238.	0.3	150
38	Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties. Soft Matter, 2011, 7, 1957.	1.2	148
39	Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose, 2013, 20, 807-818.	2.4	148
40	Enzymatic Hydrolysis of Native Cellulose Nanofibrils and Other Cellulose Model Films: Effect of Surface Structure. Langmuir, 2008, 24, 11592-11599.	1.6	144
41	Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels. Scientific Reports, 2016, 6, 30695.	1.6	139
42	Effect of Moisture on Electrospun Nanofiber Composites of Poly(vinyl alcohol) and Cellulose Nanocrystals. Biomacromolecules, 2010, 11, 2471-2477.	2.6	138
43	Surface Functionalized Nanofibrillar Cellulose (NFC) Film as a Platform for Immunoassays and Diagnostics. Biointerphases, 2012, 7, 61.	0.6	138
44	Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresource Technology, 2013, 149, 383-389.	4.8	138
45	Spinning of Cellulose Nanofibrils into Filaments: A Review. Industrial & Engineering Chemistry Research, 2017, 56, 8-19.	1.8	138
46	Nanocellulose–surfactant interactions. Current Opinion in Colloid and Interface Science, 2017, 29, 57-67.	3.4	134
47	Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering. Materials Today, 2020, 37, 126-141.	8.3	134
48	Water-Resistant, Transparent Hybrid Nanopaper by Physical Cross-Linking with Chitosan. Biomacromolecules, 2015, 16, 1062-1071.	2.6	130
49	Effect of Polyelectrolyte Charge Density on the Adsorption and Desorption Behavior on Mica. Langmuir, 2002, 18, 1604-1612.	1.6	128
50	Cellulose Nanocrystal-Mediated Synthesis of Silver Nanoparticles: Role of Sulfate Groups in Nucleation Phenomena. Biomacromolecules, 2014, 15, 373-379.	2.6	128
51	Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems. Journal of Controlled Release, 2017, 262, 139-150.	4.8	123
52	Performance, combustion, and emissions in a diesel engine operated with fuel-in-water emulsions based on lignin. Applied Energy, 2015, 154, 851-861.	5.1	120
53	Adsorption and Assembly of Cellulosic and Lignin Colloids at Oil/Water Interfaces. Langmuir, 2019, 35, 571-588.	1.6	120
54	Modification of Cellulose Nanofibrils with Luminescent Carbon Dots. Biomacromolecules, 2014, 15, 876-881.	2.6	118

4

#	Article	IF	CITATIONS
55	High Internal Phase Oil-in-Water Pickering Emulsions Stabilized by Chitin Nanofibrils: 3D Structuring and Solid Foamâ€ ⁻ . ACS Applied Materials & Interfaces, 2020, 12, 11240-11251.	4.0	118
56	Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. Advanced Materials, 2021, 33, e2001085.	11.1	117
57	Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chemical Reviews, 2021, 121, 14088-14188.	23.0	113
58	Lignin supracolloids synthesized from (W/O) microemulsions: use in the interfacial stabilization of Pickering systems and organic carriers for silver metal. Soft Matter, 2015, 11, 2046-2054.	1.2	111
59	Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. BioResources, 2011, 6, 4370-4388.	0.5	110
60	The Effect of Salt Concentration on Adsorption of Low-Charge-Density Polyelectrolytes and Interactions between Polyelectrolyte-Coated Surfaces. Journal of Colloid and Interface Science, 1998, 205, 77-88.	5.0	107
61	Solid-State Synthesis of Metal Nanoparticles Supported on Cellulose Nanocrystals and Their Catalytic Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 3974-3983.	3.2	106
62	Development of Langmuirâ^'Schaeffer Cellulose Nanocrystal Monolayers and Their Interfacial Behaviors. Langmuir, 2010, 26, 990-1001.	1.6	103
63	Formulation and Stabilization of Concentrated Edible Oil-in-Water Emulsions Based on Electrostatic Complexes of a Food-Grade Cationic Surfactant (Ethyl Lauroyl Arginate) and Cellulose Nanocrystals. Biomacromolecules, 2018, 19, 1674-1685.	2.6	103
64	All-Cellulose Composite Fibers Obtained by Electrospinning Dispersions of Cellulose Acetate and Cellulose Nanocrystals. Journal of Polymers and the Environment, 2012, 20, 1075-1083.	2.4	102
65	Nanochitin: Chemistry, Structure, Assembly, and Applications. Chemical Reviews, 2022, 122, 11604-11674.	23.0	102
66	Antibacterial activity of silver nanoparticles synthesized In-situ by solution spraying onto cellulose. Carbohydrate Polymers, 2016, 147, 500-508.	5.1	100
67	Photoluminescent Hybrids of Cellulose Nanocrystals and Carbon Quantum Dots as Cytocompatible Probes for <i>in Vitro</i> Bioimaging. Biomacromolecules, 2017, 18, 2045-2055.	2.6	100
68	Effect of Different Carbon Sources on Bacterial Nanocellulose Production and Structure Using the Low pH Resistant Strain Komagataeibacter Medellinensis. Materials, 2017, 10, 639.	1.3	98
69	Fabrication and characterization of bactericidal thiol-chitosan and chitosan iodoacetamide nanofibres. International Journal of Biological Macromolecules, 2017, 94, 96-105.	3.6	97
70	Self-Assembled Networks of Short and Long Chitin Nanoparticles for Oil/Water Interfacial Superstabilization. ACS Sustainable Chemistry and Engineering, 2019, 7, 6497-6511.	3.2	97
71	Superhydrophobic and Slippery Lubricant-Infused Flexible Transparent Nanocellulose Films by Photoinduced Thiol–Ene Functionalization. ACS Applied Materials & Interfaces, 2016, 8, 34115-34122.	4.0	96
72	Techno-Economic Assessment, Scalability, and Applications of Aerosol Lignin Micro- and Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 11853-11868.	3.2	95

#	Article	IF	CITATIONS
73	New Opportunities in the Valorization of Technical Lignins. ChemSusChem, 2021, 14, 1016-1036.	3.6	94
74	Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration. Nanoscale, 2019, 11, 19842-19849.	2.8	93
75	Multifunctional lignin-based nanocomposites and nanohybrids. Green Chemistry, 2021, 23, 6698-6760.	4.6	93
76	Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polymer Engineering and Science, 2009, 49, 2054-2061.	1.5	91
77	Conversion Economics of Forest Biomaterials: Risk and Financial Analysis of <scp>CNC</scp> Manufacturing. Biofuels, Bioproducts and Biorefining, 2017, 11, 682-700.	1.9	91
78	Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 2. In vitro lipid digestion. Food Hydrocolloids, 2019, 96, 709-716.	5.6	89
79	Salt-Induced Depression of Lower Critical Solution Temperature in a Surface-Grafted Neutral Thermoresponsive Polymer. Macromolecular Rapid Communications, 2006, 27, 697-701.	2.0	86
80	Crosslinked PVA nanofibers reinforced with cellulose nanocrystals: Water interactions and thermomechanical properties. Journal of Applied Polymer Science, 2014, 131, .	1.3	86
81	Soy protein–nanocellulose composite aerogels. Cellulose, 2013, 20, 2417-2426.	2.4	85
82	Curdlan in fibers as carriers of tetracycline hydrochloride: Controlled release and antibacterial activity. Carbohydrate Polymers, 2016, 154, 194-203.	5.1	85
83	Lignin Changes after Steam Explosion and Laccase-Mediator Treatment of Eucalyptus Wood Chips. Journal of Agricultural and Food Chemistry, 2011, 59, 8761-8769.	2.4	84
84	Generic Method for Attaching Biomolecules via Avidin–Biotin Complexes Immobilized on Films of Regenerated and Nanofibrillar Cellulose. Biomacromolecules, 2012, 13, 2802-2810.	2.6	83
85	Anomalousâ€Diffusionâ€Assisted Brightness in White Cellulose Nanofibril Membranes. Advanced Materials, 2018, 30, e1704050.	11.1	83
86	Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route. Materials Horizons, 2018, 5, 408-415.	6.4	81
87	Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds. Biomacromolecules, 2019, 20, 2770-2778.	2.6	81
88	Spruce milled wood lignin: linear, branched or cross-linked?. Green Chemistry, 2020, 22, 3985-4001.	4.6	81
89	Clean and high-throughput production of silver nanoparticles mediated by soy protein via solid state synthesis. Journal of Cleaner Production, 2017, 144, 501-510.	4.6	77
90	Cellulose micro―and nanofibrils (CMNF) manufacturing ―financial and risk assessment. Biofuels, Bioproducts and Biorefining, 2018, 12, 251-264.	1.9	77

#	Article	IF	CITATIONS
91	Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture. Nano Today, 2021, 37, 101078.	6.2	77
92	Surface Interaction Forces of Cellulose Nanocrystals Grafted with Thermoresponsive Polymer Brushes. Biomacromolecules, 2011, 12, 2788-2796.	2.6	75
93	Dielectrophoresis of cellulose nanocrystals and alignment in ultrathin films by electric field-assisted shear assembly. Journal of Colloid and Interface Science, 2011, 363, 206-212.	5.0	75
94	Highly Transparent, Strong, and Flexible Films with Modified Cellulose Nanofiber Bearing UV Shielding Property. Biomacromolecules, 2018, 19, 4565-4575.	2.6	75
95	Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Biomacromolecules, 2020, 21, 1875-1885.	2.6	75
96	Interfacial Properties of Lignin-Based Electrospun Nanofibers and Films Reinforced with Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2012, 4, 6849-6856.	4.0	74
97	Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose, 2018, 25, 1011-1029.	2.4	74
98	Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries. Science Advances, 2021, 7, eabh3482.	4.7	74
99	Recent Innovations in Emulsion Science and Technology for Food Applications. Journal of Agricultural and Food Chemistry, 2021, 69, 8944-8963.	2.4	73
100	Low-value wood for sustainable high-performance structural materials. Nature Sustainability, 2022, 5, 628-635.	11.5	72
101	Black liquor lignin biodegradation by Trametes elegans. International Biodeterioration and Biodegradation, 2003, 52, 167-173.	1.9	71
102	On the Surface Interactions of Proteins with Lignin. ACS Applied Materials & Interfaces, 2013, 5, 199-206.	4.0	71
103	Supramolecular assemblies of lignin into nano- and microparticles. MRS Bulletin, 2017, 42, 371-378.	1.7	70
104	Milk fat globules and associated membranes: Colloidal properties and processing effects. Advances in Colloid and Interface Science, 2017, 245, 92-101.	7.0	70
105	Nanochitin-stabilized pickering emulsions: Influence of nanochitin on lipid digestibility and vitamin bioaccessibility. Food Hydrocolloids, 2020, 106, 105878.	5.6	70
106	Preferential Adsorption and Activity of Monocomponent Cellulases on Lignocellulose Thin Films with Varying Lignin Content. Biomacromolecules, 2013, 14, 1231-1239.	2.6	69
107	Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes. RSC Advances, 2016, 6, 85802-85810.	1.7	68
108	High Axial Ratio Nanochitins for Ultrastrong and Shape-Recoverable Hydrogels and Cryogels <i>via</i> Ice Templating. ACS Nano, 2019, 13, 2927-2935.	7.3	68

#	Article	IF	CITATIONS
109	Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing. Biomacromolecules, 2019, 20, 635-644.	2.6	68
110	A Review of Cellulose and Cellulose Blends for Preparation of Bio-derived and Conventional Membranes, Nanostructured Thin Films, and Composites. Polymer Reviews, 2018, 58, 102-163.	5.3	67
111	Thermomechanical Properties of Lignin-Based Electrospun Nanofibers and Films Reinforced with Cellulose Nanocrystals: A Dynamic Mechanical and Nanoindentation Study. ACS Applied Materials & Interfaces, 2013, 5, 11768-11776.	4.0	66
112	Generation and Properties of Antibacterial Coatings Based on Electrostatic Attachment of Silver Nanoparticles to Protein-Coated Polypropylene Fibers. ACS Applied Materials & Interfaces, 2013, 5, 5298-5306.	4.0	66
113	Cellulosic Substrates for Removal of Pollutants from Aqueous Systems: A Review. 3. Spilled Oil and Emulsified Organic Liquids. BioResources, 2013, 8, .	0.5	66
114	Asymmetric cellulose nanocrystals: thiolation of reducing end groups via NHS–EDC coupling. Cellulose, 2014, 21, 4209-4218.	2.4	66
115	Green Modification of Surface Characteristics of Cellulosic Materials at the Molecular or Nano Scale: A Review. BioResources, 2015, 10, .	0.5	65
116	Development of food-grade Pickering emulsions stabilized by a mixture of cellulose nanofibrils and nanochitin. Food Hydrocolloids, 2021, 113, 106451.	5.6	65
117	Lignin nano- and microparticles as template for nanostructured materials: formation of hollow metal-phenolic capsules. Green Chemistry, 2018, 20, 1335-1344.	4.6	64
118	Exploiting Supramolecular Interactions from Polymeric Colloids for Strong Anisotropic Adhesion between Solid Surfaces. Advanced Materials, 2020, 32, e1906886.	11.1	64
119	Adsorption of a Nonionic Symmetric Triblock Copolymer on Surfaces with Different Hydrophobicity. Langmuir, 2010, 26, 9565-9574.	1.6	63
120	Bioactive Cellulose Nanofibrils for Specific Human IgG Binding. Biomacromolecules, 2013, 14, 4161-4168.	2.6	63
121	Surface forces and measuring techniques. International Journal of Mineral Processing, 1999, 56, 1-30.	2.6	62
122	Bicomponent Lignocellulose Thin Films to Study the Role of Surface Lignin in Cellulolytic Reactions. Biomacromolecules, 2012, 13, 3228-3240.	2.6	62
123	Magneto-responsive hybrid materials based on cellulose nanocrystals. Cellulose, 2014, 21, 2557-2566.	2.4	61
124	Effect of Anisotropy of Cellulose Nanocrystal Suspensions on Stratification, Domain Structure Formation, and Structural Colors. Biomacromolecules, 2018, 19, 2931-2943.	2.6	61
125	Cilia-Mimetic Hairy Surfaces Based on End-Immobilized Nanocellulose Colloidal Rods. Biomacromolecules, 2013, 14, 2807-2813.	2.6	60
126	Calcium Chelation of Lignin from Pulping Spent Liquor for Water-Resistant Slow-Release Urea Fertilizer Systems. ACS Sustainable Chemistry and Engineering, 2017, 5, 1054-1061.	3.2	60

#	Article	IF	CITATIONS
127	Twoâ€Phase Emulgels for Direct Ink Writing of Skinâ€Bearing Architectures. Advanced Functional Materials, 2019, 29, 1902990.	7.8	60
128	Conductive Carbon Microfibers Derived from Wet-Spun Lignin/Nanocellulose Hydrogels. ACS Sustainable Chemistry and Engineering, 2019, 7, 6013-6022.	3.2	60
129	Development and characterization of thin polymer films relevant to fiber processing. Thin Solid Films, 2009, 517, 4348-4354.	0.8	59
130	Adsorption and Association of a Symmetric PEO-PPO-PEO Triblock Copolymer on Polypropylene, Polyethylene, and Cellulose Surfaces. ACS Applied Materials & Interfaces, 2011, 3, 2349-2357.	4.0	58
131	Synthesis of soy protein–lignin nanofibers by solution electrospinning. Reactive and Functional Polymers, 2014, 85, 221-227.	2.0	58
132	X-ray Photoelectron Spectroscopy in the Study of Polyelectrolyte Adsorption on Mica and Cellulose. Journal of Physical Chemistry B, 2000, 104, 10032-10042.	1.2	57
133	Microbeads and Hollow Microcapsules Obtained by Self-Assembly of Pickering Magneto-Responsive Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2014, 6, 16851-16858.	4.0	57
134	Complexes of Magnetic Nanoparticles with Cellulose Nanocrystals as Regenerable, Highly Efficient, and Selective Platform for Protein Separation. Biomacromolecules, 2017, 18, 898-905.	2.6	57
135	Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock 2 Materials & amp; Interfaces, 2020, 12, 6899-6909.	10 Tf 50 4: 4.0	27 Td (sebao 57
136	Unique reactivity of nanoporous cellulosic materials mediated by surface-confined water. Nature Communications, 2021, 12, 2513.	5.8	57
137	Short-range interactions between non-ionic surfactant layers. Physical Chemistry Chemical Physics, 2006, 8, 5501.	1.3	56
138	Control of tacky deposits on paper machines – A review. Nordic Pulp and Paper Research Journal, 2006, 21, 154-171.	0.3	56
139	In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking. Cellulose, 2014, 21, 1745-1756.	2.4	56
140	Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil. Journal of Colloid and Interface Science, 2015, 445, 166-173.	5.0	56
141	Lignin-Based Porous Supraparticles for Carbon Capture. ACS Nano, 2021, 15, 6774-6786.	7.3	56
142	Oil Spills Abatement: Factors Affecting Oil Uptake by Cellulosic Fibers. Environmental Science & Technology, 2012, 46, 7725-7730.	4.6	55
143	Physical, thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls. Industrial Crops and Products, 2016, 84, 337-343.	2.5	55
144	Absorbent Filaments from Cellulose Nanofibril Hydrogels through Continuous Coaxial Wet Spinning. ACS Applied Materials & Interfaces, 2018, 10, 27287-27296.	4.0	55

#	Article	IF	CITATIONS
145	Polyelectrolytes as adhesion modifiers. Advances in Colloid and Interface Science, 2003, 104, 53-74.	7.0	54
146	Microemulsion Systems for Fiber Deconstruction into Cellulose Nanofibrils. ACS Applied Materials & Interfaces, 2014, 6, 22622-22627.	4.0	54
147	Curdlan cryogels reinforced with cellulose nanofibrils for controlled release. Journal of Environmental Chemical Engineering, 2017, 5, 5754-5761.	3.3	54
148	Formation and Antifouling Properties of Amphiphilic Coatings on Polypropylene Fibers. Biomacromolecules, 2012, 13, 3769-3779.	2.6	53
149	Multifunctional 3Dâ€Printed Patches for Longâ€Term Drug Release Therapies after Myocardial Infarction. Advanced Functional Materials, 2020, 30, 2003440.	7.8	53
150	Antioxidant and Thermal Stabilization of Polypropylene by Addition of Butylated Lignin at Low Loadings. ACS Sustainable Chemistry and Engineering, 2016, 4, 5248-5257.	3.2	52
151	Biogenic silica nanoparticles loaded with neem bark extract as green, slow-release biocide. Journal of Cleaner Production, 2017, 142, 4206-4213.	4.6	52
152	Modulation of Physicochemical Characteristics of Pickering Emulsions: Utilization of Nanocellulose- and Nanochitin-Coated Lipid Droplet Blends. Journal of Agricultural and Food Chemistry, 2020, 68, 603-611.	2.4	52
153	Cellulose Nanofibrils Endow Phase-Change Polyethylene Glycol with Form Control and Solid-to-gel Transition for Thermal Energy Storage. ACS Applied Materials & Interfaces, 2021, 13, 6188-6200.	4.0	51
154	Consequences of the nanoporosity of cellulosic fibers on their streaming potential and their interactions with cationic polyelectrolytes. Cellulose, 2007, 14, 655-671.	2.4	50
155	Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels. Carbohydrate Polymers, 2021, 266, 118114.	5.1	50
156	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues. Advanced Materials, 2021, 33, e2102520.	11.1	50
157	Starch-Based Biofoams Reinforced with Lignocellulose Nanofibrils from Residual Palm Empty Fruit Bunches: Water Sorption and Mechanical Strength. ACS Sustainable Chemistry and Engineering, 2016, 4, 5546-5552.	3.2	49
158	Hybrid films of chitosan, cellulose nanofibrils and boric acid: Flame retardancy, optical and thermo-mechanical properties. Carbohydrate Polymers, 2017, 177, 13-21.	5.1	49
159	Continuous Metal–Organic Framework Biomineralization on Cellulose Nanocrystals: Extrusion of Functional Composite Filaments. ACS Sustainable Chemistry and Engineering, 2019, 7, 6287-6294.	3.2	49
160	Phosphorylated cellulose nanofibers exhibit exceptional capacity for uranium capture. Cellulose, 2020, 27, 10719-10732.	2.4	48
161	Residual lignin in cellulose nanofibrils enhances the interfacial stabilization of Pickering emulsions. Carbohydrate Polymers, 2021, 253, 117223.	5.1	48
162	Plantâ€Based Structures as an Opportunity to Engineer Optical Functions in Nextâ€Generation Light Management. Advanced Materials, 2022, 34, e2104473.	11.1	48

#	Article	IF	CITATIONS
163	The Dispersion Science of Papermaking. Journal of Dispersion Science and Technology, 2005, 25, 713-732.	1.3	47
164	Featherlight, Mechanically Robust Cellulose Ester Aerogels for Environmental Remediation. ACS Omega, 2017, 2, 4297-4305.	1.6	47
165	Inverse Thermoreversible Mechanical Stiffening and Birefringence in a Methylcellulose/Cellulose Nanocrystal Hydrogel. Biomacromolecules, 2018, 19, 2795-2804.	2.6	47
166	Form-stable phase change materials from mesoporous balsa after selective removal of lignin. Composites Part B: Engineering, 2020, 199, 108296.	5.9	47
167	Understanding lignin micro- and nanoparticle nucleation and growth in aqueous suspensions by solvent fractionation. Green Chemistry, 2021, 23, 1001-1012.	4.6	47
168	Oilâ€inâ€Water Emulsions Stabilized by Carboxymethylated Lignins: Properties and Energy Prospects. ChemSusChem, 2016, 9, 2460-2469.	3.6	46
169	Self-Bonding Boards From Plantain Fiber Bundles After Enzymatic Treatment: Adhesion Improvement of Lignocellulosic Products by Enzymatic Pre-Treatment. Journal of Polymers and the Environment, 2011, 19, 182-188.	2.4	45
170	Asymmetrical coffee rings from cellulose nanocrystals and prospects in art and design. Cellulose, 2019, 26, 491-506.	2.4	45
171	Interactions between Nonpolar Surfaces Coated with the Nonionic Surfactant Hexaoxyethylene Dodecyl Ether C12E6and the Origin of Surface Charges at the Air/Water Interface. Langmuir, 2004, 20, 4977-4988.	1.6	44
172	Attachment of gold nanoparticles on cellulose nanofibrils via click reactions and electrostatic interactions. Cellulose, 2016, 23, 3065-3075.	2.4	44
173	Formulation and Composition Effects in Phase Transitions of Emulsions Costabilized by Cellulose Nanofibrils and an Ionic Surfactant. Biomacromolecules, 2017, 18, 4393-4404.	2.6	44
174	Particulate Coatings via Evaporation-Induced Self-Assembly of Polydisperse Colloidal Lignin on Solid Interfaces. Langmuir, 2018, 34, 5759-5771.	1.6	44
175	Nanofibrillar networks enable universal assembly of superstructured particle constructs. Science Advances, 2020, 6, eaaz7328.	4.7	44
176	A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media. Carbohydrate Polymers, 2014, 100, 107-115.	5.1	43
177	Recent developments in colorimetric and optical indicators stimulated by volatile base nitrogen to monitor seafood freshness. Food Packaging and Shelf Life, 2021, 28, 100634.	3.3	42
178	Morphological and Thermochemical Changes upon Autohydrolysis and Microemulsion Treatments of Coir and Empty Fruit Bunch Residual Biomass to Isolate Lignin-Rich Micro- and Nanofibrillar Cellulose. ACS Sustainable Chemistry and Engineering, 2017, 5, 2483-2492.	3.2	41
179	All-Aqueous Liquid Crystal Nanocellulose Emulsions with Permeable Interfacial Assembly. ACS Nano, 2020, 14, 13380-13390.	7.3	41
180	Recent Advances in Food Emulsions and Engineering Foodstuffs Using Plant-Based Nanocelluloses. Annual Review of Food Science and Technology, 2021, 12, 383-406.	5.1	41

#	Article	IF	CITATIONS
181	Assembling Native Elementary Cellulose Nanofibrils via a Reversible and Regioselective Surface Functionalization. Journal of the American Chemical Society, 2021, 143, 17040-17046.	6.6	41
182	Quantification of Cellulase Activity Using the Quartz Crystal Microbalance Technique. Analytical Chemistry, 2009, 81, 1872-1880.	3.2	40
183	Leakage-proof microencapsulation of phase change materials by emulsification with acetylated cellulose nanofibrils. Carbohydrate Polymers, 2021, 254, 117279.	5.1	40
184	In Situ Monitoring of Cellulase Activity by Microgravimetry with a Quartz Crystal Microbalance. Journal of Physical Chemistry B, 2009, 113, 14761-14768.	1.2	39
185	Interactions between Cellulolytic Enzymes with Native, Autohydrolysis, and Technical Lignins and the Effect of a Polysorbate Amphiphile in Reducing Nonproductive Binding. Biomacromolecules, 2015, 16, 3878-3888.	2.6	39
186	Optical Properties of Selfâ€Assembled Cellulose Nanocrystals Films Suspended at Planar–Symmetrical Interfaces. Small, 2017, 13, 1702084.	5.2	39
187	Synthesis of organic aerogels with tailorable morphology and strength by controlled solvent swelling following Hansen solubility. Scientific Reports, 2018, 8, 2106.	1.6	39
188	Heterogeneous Acetylation of Plant Fibers into Micro- and Nanocelluloses for the Synthesis of Highly Stretchable, Tough, and Water-Resistant Co-continuous Filaments via Wet-Spinning. ACS Applied Materials & Interfaces, 2018, 10, 44776-44786.	4.0	39
189	Lignin Particles for Multifunctional Membranes, Antioxidative Microfiltration, Patterning, and 3D Structuring. ACS Applied Materials & Interfaces, 2019, 11, 45226-45236.	4.0	39
190	Adsorption of polysaccharide wet-end additives in papermaking systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155, 419-432.	2.3	38
191	Quantitative 31P NMR detection of oxygen-centered and carbon-centered radical species. Bioorganic and Medicinal Chemistry, 2006, 14, 4017-4028.	1.4	38
192	Affibody conjugation onto bacterial cellulose tubes and bioseparation of human serum albumin. RSC Advances, 2014, 4, 51440-51450.	1.7	38
193	Shear and extensional rheology of aqueous suspensions of cellulose nanofibrils for biopolymer-assisted filament spinning. European Polymer Journal, 2018, 109, 367-378.	2.6	38
194	Coupling Nanofibril Lateral Size and Residual Lignin to Tailor the Properties of Lignocellulose Films. Advanced Materials Interfaces, 2019, 6, 1900770.	1.9	38
195	Recent development in food emulsion stabilized by plant-based cellulose nanoparticles. Current Opinion in Colloid and Interface Science, 2021, 56, 101512.	3.4	38
196	Water-Wettable Polypropylene Fibers by Facile Surface Treatment Based on Soy Proteins. ACS Applied Materials & Interfaces, 2013, 5, 6541-6548.	4.0	37
197	Effect of PEG–PDMAEMA Block Copolymer Architecture on Polyelectrolyte Complex Formation with Heparin. Biomacromolecules, 2016, 17, 2891-2900.	2.6	37
198	Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis. International Journal of Biological Macromolecules, 2018, 117, 735-741.	3.6	37

#	Article	IF	CITATIONS
199	Tessellation of Chiralâ€Nematic Cellulose Nanocrystal Films by Microtemplating. Advanced Functional Materials, 2019, 29, 1808518.	7.8	37
200	Lignin-First Integrated Hydrothermal Treatment (HTT) and Synthesis of Low-Cost Biorefinery Particles. ACS Sustainable Chemistry and Engineering, 2020, 8, 1230-1239.	3.2	37
201	Cellulose as the <i>in situ</i> reference for organic XPS. Why? Because it works. Surface and Interface Analysis, 2020, 52, 1134-1138.	0.8	37
202	Chitin nanocrystals reduce lipid digestion and β-carotene bioaccessibility: An in-vitro INFOGEST gastrointestinal study. Food Hydrocolloids, 2021, 113, 106494.	5.6	37
203	Pickering Emulsions <i>via</i> Interfacial Nanoparticle Complexation of Oppositely Charged Nanopolysaccharides. ACS Applied Materials & Interfaces, 2021, 13, 12581-12593.	4.0	37
204	Permeation of polyelectrolytes and other solutes into the pore spaces of water-swollen cellulose: A review. BioResources, 2009, 4, 1222-1262.	0.5	36
205	Specific Binding of Immunoglobulin G with Bioactive Short Peptides Supported on Antifouling Copolymer Layers for Detection in Quartz Crystal Microgravimetry and Surface Plasmon Resonance. Analytical Chemistry, 2013, 85, 1106-1113.	3.2	36
206	Retention of lysozyme activity by physical immobilization in nanocellulose aerogels and antibacterial effects. Cellulose, 2017, 24, 2837-2848.	2.4	36
207	How Cellulose Nanofibrils Affect Bulk, Surface, and Foam Properties of Anionic Surfactant Solutions. Biomacromolecules, 2019, 20, 4361-4369.	2.6	36
208	Selective Laser Sintering of Lignin-Based Composites. ACS Sustainable Chemistry and Engineering, 2021, 9, 2727-2735.	3.2	36
209	Controlled biocide release from hierarchically-structured biogenic silica: surface chemistry to tune release rate and responsiveness. Scientific Reports, 2018, 8, 5555.	1.6	35
210	Expanding the upper limits of robustness of cellulose nanocrystal aerogels: outstanding mechanical performance and associated pore compression response of chiral-nematic architectures. Journal of Materials Chemistry A, 2019, 7, 15309-15319.	5.2	35
211	Ascorbic acid-loaded polyvinyl alcohol/cellulose nanofibril hydrogels as precursors for 3D printed materials. Materials Science and Engineering C, 2021, 130, 112424.	3.8	35
212	Molecular Dynamics Simulations of the Adhesion of a Thin Annealed Film of Oleic Acid onto Crystalline Cellulose. Biomacromolecules, 2014, 15, 1476-1483.	2.6	34
213	Dynamic and equilibrium performance of sensors based on short peptide ligands for affinity adsorption of human IgG using surface plasmon resonance. Biosensors and Bioelectronics, 2014, 58, 380-387.	5.3	34
214	Accounting for Substrate Interactions in the Measurement of the Dimensions of Cellulose Nanofibrils. Biomacromolecules, 2019, 20, 2657-2665.	2.6	34
215	Rapid and Complete Enzyme Hydrolysis of Lignocellulosic Nanofibrils. ACS Macro Letters, 2012, 1, 1321-1325.	2.3	33
216	Filaments with Affinity Binding and Wet Strength Can Be Achieved by Spinning Bifunctional Cellulose Nanofibrils. Biomacromolecules, 2017, 18, 1803-1813.	2.6	33

13

#	Article	IF	CITATIONS
217	Lignin Films from Spruce, Eucalyptus, and Wheat Straw Studied with Electroacoustic and Optical Sensors: Effect of Composition and Electrostatic Screening on Enzyme Binding. Biomacromolecules, 2017, 18, 1322-1332.	2.6	33
218	Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions. International Journal of Biological Macromolecules, 2019, 129, 351-360.	3.6	33
219	Single-Step Fiber Pretreatment with Monocomponent Endoglucanase: Defibrillation Energy and Cellulose Nanofibril Quality. ACS Sustainable Chemistry and Engineering, 2021, 9, 2260-2270.	3.2	33
220	Using micro- and nanofibrillated cellulose as a means to reduce weight of paper products: A review. BioResources, 2020, 15, 4553-4590.	0.5	33
221	Desorption of Low-Charge-Density Polyelectrolyte Adlayers in Aqueous Sodium n-Dodecyl Sulfate Solution. Journal of Colloid and Interface Science, 2001, 237, 104-111.	5.0	32
222	Effect of Charge Asymmetry on Adsorption and Phase Separation of Polyampholytes on Silica and Cellulose Surfaces. Journal of Physical Chemistry B, 2010, 114, 719-727.	1.2	32
223	Laccase-Mediated Coupling of Nonpolar Chains for the Hydrophobization of Lignocellulose. Biomacromolecules, 2013, 14, 1637-1644.	2.6	32
224	Using gelatin protein to facilitate paper thermoformability. Reactive and Functional Polymers, 2014, 85, 175-184.	2.0	32
225	Green Formation of Robust Supraparticles for Cargo Protection and Hazards Control in Natural Environments. Small, 2018, 14, e1801256.	5.2	32
226	Lignin-based multiwall carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2019, 121, 175-179.	3.8	32
227	Morphological and Wettability Properties of Thin Coating Films Produced from Technical Lignins. Langmuir, 2020, 36, 9675-9684.	1.6	32
228	Chiral Nematic Coatings Based on Cellulose Nanocrystals as a Multiplexing Platform for Humidity Sensing and Dual Anticounterfeiting. Small, 2021, 17, e2103936.	5.2	32
229	Boundary Lubrication of PEO-PPO-PEO Triblock Copolymer Physisorbed on Polypropylene, Polyethylene, and Cellulose Surfaces. Industrial & Engineering Chemistry Research, 2012, 51, 2931-2940.	1.8	31
230	Carboxymethylated lignins with low surface tension toward low viscosity and highly stable emulsions of crude bitumen and refined oils. Journal of Colloid and Interface Science, 2016, 482, 27-38.	5.0	31
231	Solvent Welding and Imprinting Cellulose Nanofiber Films Using Ionic Liquids. Biomacromolecules, 2019, 20, 502-514.	2.6	31
232	Moulded pulp fibers for disposable food packaging: A state-of-the-art review. Food Packaging and Shelf Life, 2022, 33, 100908.	3.3	31
233	Lignins as Emulsion Stabilizers. ACS Symposium Series, 2007, , 182-199.	0.5	30
234	The Soft-Confined Method for Creating Molecular Models of Amorphous Polymer Surfaces. Journal of Physical Chemistry B, 2012, 116, 1570-1578.	1.2	30

#	Article	IF	CITATIONS
235	Effects of residual lignin and heteropolysaccharides on the bioconversion of softwood lignocellulose nanofibrils obtained by SO2–ethanol–water fractionation. Bioresource Technology, 2014, 161, 55-62.	4.8	30
236	Effect of Molecular Architecture of PDMAEMA–POEGMA Random and Block Copolymers on Their Adsorption on Regenerated and Anionic Nanocelluloses and Evidence of Interfacial Water Expulsion. Journal of Physical Chemistry B, 2015, 119, 15275-15286.	1.2	30
237	Interfacial properties of cellulose nanoparticles obtained from acid and enzymatic hydrolysis of cellulose. Cellulose, 2016, 23, 2421-2437.	2.4	30
238	Multiwalled Carbon Nanotubes/Nanofibrillar Cellulose/Nafion Composite-Modified Tetrahedral Amorphous Carbon Electrodes for Selective Dopamine Detection. Journal of Physical Chemistry C, 2019, 123, 24826-24836.	1.5	30
239	Soft cellulose II nanospheres: sol–gel behaviour, swelling and material synthesis. Nanoscale, 2019, 11, 17773-17781.	2.8	30
240	Chirality from Cryo-Electron Tomograms of Nanocrystals Obtained by Lateral Disassembly and Surface Etching of Never-Dried Chitin. ACS Nano, 2020, 14, 6921-6930.	7.3	30
241	Monitoring Cellulase Protein Adsorption and Recovery Using SDS-PAGE. Industrial & Engineering Chemistry Research, 2010, 49, 8333-8338.	1.8	29
242	Generation of Functional Coatings on Hydrophobic Surfaces through Deposition of Denatured Proteins Followed by Grafting from Polymerization. Biomacromolecules, 2012, 13, 1371-1382.	2.6	29
243	Micro-patterns on nanocellulose films and paper by photo-induced thiol–yne click coupling: a facile method toward wetting with spatial resolution. Cellulose, 2018, 25, 367-375.	2.4	29
244	Micro- and nanofibrillated cellulose from virgin and recycled fibers: A comparative study of its effects on the properties of hygiene tissue paper. Carbohydrate Polymers, 2021, 254, 117430.	5.1	29
245	Single-Molecule Resolution of Protein Dynamics on Polymeric Membrane Surfaces: The Roles of Spatial and Population Heterogeneity. ACS Applied Materials & amp; Interfaces, 2015, 7, 3607-3617.	4.0	28
246	Biogenic SiO2 in colloidal dispersions via ball milling and ultrasonication. Powder Technology, 2016, 301, 58-64.	2.1	28
247	Hydrothermal and mechanically generated hemp hurd nanofibers for sustainable barrier coatings/films. Industrial Crops and Products, 2021, 168, 113582.	2.5	28
248	Coadsorption and Surface Forces for Selective Surfaces in Contact with Aqueous Mixtures of Oppositely Charged Surfactants and Low Charge Density Polyelectrolytes. Langmuir, 2004, 20, 3221-3230.	1.6	27
249	Bicomponent fibre mats with adhesive ultra-hydrophobicity tailored with cellulose derivatives. Journal of Materials Chemistry, 2012, 22, 12072.	6.7	27
250	In-situ glyoxalization during biosynthesis of bacterial cellulose. Carbohydrate Polymers, 2015, 126, 32-39.	5.1	27
251	Interpenetrated polymer networks in composites with poly(vinyl alcohol), micro- and nano-fibrillated cellulose (M/NFC) and polyHEMA to develop packaging materials. Cellulose, 2015, 22, 3877-3894.	2.4	27
252	Preparation of photoreactive nanocellulosic materials via benzophenone grafting. RSC Advances, 2016, 6, 85100-85106.	1.7	27

#	Article	IF	CITATIONS
253	Formation and structure of insoluble particles in reconstituted model infant formula powders. International Dairy Journal, 2018, 82, 19-27.	1.5	27
254	Isolation and Characterization of Nanofibrillar Cellulose from <i>Agave tequilana</i> Weber Bagasse. Advances in Materials Science and Engineering, 2019, 2019, 1-7.	1.0	27
255	Effects of non-solvents and electrolytes on the formation and properties of cellulose I filaments. Scientific Reports, 2019, 9, 16691.	1.6	27
256	Cogrinding Wood Fibers and Tannins: Surfactant Effects on the Interactions and Properties of Functional Films for Sustainable Packaging Materials. Biomacromolecules, 2020, 21, 1865-1874.	2.6	27
257	3D printing and properties of cellulose nanofibrils-reinforced quince seed mucilage bio-inks. International Journal of Biological Macromolecules, 2021, 192, 1098-1107.	3.6	27
258	Mildly processed chitin used in one-component drinking straws and single use materials: Strength, biodegradability and recyclability. Chemical Engineering Journal, 2022, 442, 136173.	6.6	27
259	Fenton's Reagent-Mediated Degradation of Residual Kraft Black Liquor. Applied Biochemistry and Biotechnology, 2002, 97, 091-104.	1.4	26
260	Surface Structuring and Water Interactions of Nanocellulose Filaments Modified with Organosilanes toward Wearable Materials. ACS Applied Nano Materials, 2018, 1, 5279-5288.	2.4	26
261	Mussel-inspired reinforcement of a biodegradable aliphatic polyester with bamboo fibers. Journal of Cleaner Production, 2021, 296, 126587.	4.6	26
262	High-resolution 3D printing of xanthan gum/nanocellulose bio-inks. International Journal of Biological Macromolecules, 2022, 209, 2020-2031.	3.6	26
263	Foamability and foam stability at high pressures and temperatures. I. Instrument validation. Review of Scientific Instruments, 2003, 74, 2925-2932.	0.6	25
264	Adsorption of Glycinin and Î ² -Conglycinin on Silica and Cellulose: Surface Interactions as a Function of Denaturation, pH, and Electrolytes. Biomacromolecules, 2012, 13, 387-396.	2.6	25
265	Capillary flooding of wood with microemulsions from Winsor I systems. Journal of Colloid and Interface Science, 2012, 381, 171-179.	5.0	25
266	Specificity and Regenerability of Short Peptide Ligands Supported on Polymer Layers for Immunoglobulin G Binding and Detection. ACS Applied Materials & Interfaces, 2013, 5, 8030-8037.	4.0	25
267	Soy Protein-Based Polyelectrolyte Complexes as Biobased Wood Fiber Dry Strength Agents. ACS Sustainable Chemistry and Engineering, 2014, 2, 2267-2274.	3.2	25
268	Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers. Soft Matter, 2016, 12, 2721-2728.	1.2	25
269	Immunosensors for C-Reactive Protein Based on Ultrathin Films of Carboxylated Cellulose Nanofibrils. Biomacromolecules, 2017, 18, 526-534.	2.6	25
270	Bioactive 3D-Shaped Wound Dressings Synthesized from Bacterial Cellulose: Effect on Cell Adhesion of Polyvinyl Alcohol Integrated In Situ. International Journal of Polymer Science, 2017, 2017, 1-10.	1.2	25

#	Article	IF	CITATIONS
271	Films based on crosslinked TEMPO-oxidized cellulose and predictive analysis via machine learning. Scientific Reports, 2018, 8, 4748.	1.6	25
272	Coaxial Spinning of All-Cellulose Systems for Enhanced Toughness: Filaments of Oxidized Nanofibrils Sheathed in Cellulose II Regenerated from a Protic Ionic Liquid. Biomacromolecules, 2020, 21, 878-891.	2.6	25
273	Interactions between type A carbohydrate binding modules and cellulose studied with a quartz crystal microbalance with dissipation monitoring. Cellulose, 2020, 27, 3661-3675.	2.4	25
274	Biowaste-derived electrode and electrolyte materials for flexible supercapacitors. Chemical Engineering Journal, 2022, 435, 135058.	6.6	25
275	Protein-assisted 2D assembly of gold nanoparticles on a polysaccharide surface. Chemical Communications, 2013, 49, 1318.	2.2	24
276	Nanochitins of Varying Aspect Ratio and Properties of Microfibers Produced by Interfacial Complexation with Seaweed Alginate. ACS Sustainable Chemistry and Engineering, 2020, 8, 1137-1145.	3.2	24
277	Comparative Screening of the Structural and Thermomechanical Properties of FDM Filaments Comprising Thermoplastics Loaded with Cellulose, Carbon and Glass Fibers. Materials, 2020, 13, 422.	1.3	24
278	Charge Matters: Electrostatic Complexation As a Green Approach to Assemble Advanced Functional Materials. ACS Omega, 2020, 5, 1296-1304.	1.6	24
279	Transparent films by ionic liquid welding of cellulose nanofibers and polylactide: Enhanced biodegradability in marine environments. Journal of Hazardous Materials, 2021, 402, 124073.	6.5	24
280	Regioselective and water-assisted surface esterification of never-dried cellulose: nanofibers with adjustable surface energy. Green Chemistry, 2021, 23, 6966-6974.	4.6	24
281	Fluorosurfactant Self-Assembly at Solid/Liquid Interfaces. Langmuir, 2002, 18, 8085-8095.	1.6	23
282	Protein-mediated interfacial adhesion in composites of cellulose nanofibrils and polylactide: Enhanced toughness towards material development. Composites Science and Technology, 2018, 160, 145-151.	3.8	23
283	Guiding Bacterial Activity for Biofabrication of Complex Materials <i>via</i> Controlled Wetting of Superhydrophobic Surfaces. ACS Nano, 2020, 14, 12929-12937.	7.3	23
284	Selfâ€Assembled Nanorods and Microspheres for Functional Photonics: Retroreflector Meets Microlens Array. Advanced Optical Materials, 2021, 9, 2002258.	3.6	23
285	Charge and the dry-strength performance of polyampholytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 23-32.	2.3	22
286	Adsorption of PEO–PPO–PEO Triblock Copolymers with End-Capped Cationic Chains of Poly(2-dimethylaminoethyl methacrylate). Langmuir, 2011, 27, 9769-9780.	1.6	22
287	Highly percolated poly(vinyl alcohol) and bacterial nanocellulose synthesized in situ by physical-crosslinking: exploiting polymer synergies for biomedical nanocomposites. RSC Advances, 2015, 5, 90742-90749.	1.7	22
288	Control of Protein Affinity of Bioactive Nanocellulose and Passivation Using Engineered Block and Random Copolymers. ACS Applied Materials & Interfaces, 2016, 8, 5668-5678.	4.0	22

#	Article	IF	CITATIONS
289	Separation of milk fat globules via microfiltration: Effect of diafiltration media and opportunities for stream valorization. Journal of Dairy Science, 2016, 99, 8644-8654.	1.4	22
290	Contribution of Residual Proteins to the Thermomechanical Performance of Cellulosic Nanofibrils Isolated from Green Macroalgae. ACS Sustainable Chemistry and Engineering, 2017, 5, 6978-6985.	3.2	22
291	Soy Proteins As a Sustainable Solution to Strengthen Recycled Paper and Reduce Deposition of Hydrophobic Contaminants in Papermaking: A Bench and Pilot-Plant Study. ACS Sustainable Chemistry and Engineering, 2017, 5, 7211-7219.	3.2	22
292	Thermally Stable and Tough Coatings and Films Using Vinyl Silylated Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 1988-1998.	3.2	22
293	Use of Biogenic Silica in Porous Alginate Matrices for Sustainable Fertilization with Tailored Nutrient Delivery. ACS Sustainable Chemistry and Engineering, 2018, 6, 2716-2723.	3.2	22
294	Food emulsifiers based on milk fat globule membranes and their interactions with calcium and casein phosphoproteins. Food Hydrocolloids, 2019, 94, 30-37.	5.6	22
295	Interactions between Nonpolar Surfaces Coated with the Nonionic Surfactantn-Dodecyl-β-d-maltoside. Langmuir, 2005, 21, 11836-11843.	1.6	21
296	Multilayers of Low Charge Density Polyelectrolytes on Thin Films of Carboxymethylated and Cationic Cellulose. Journal of Adhesion Science and Technology, 2011, 25, 643-660.	1.4	21
297	Reinforcement of polypropylene with lignocellulose nanofibrils and compatibilization with biobased polymers. Journal of Applied Polymer Science, 2016, 133, .	1.3	21
298	Interfacial Stabilization of Fiber-Laden Foams with Carboxymethylated Lignin toward Strong Nonwoven Networks. ACS Applied Materials & Interfaces, 2016, 8, 19827-19835.	4.0	21
299	Mechanically-induced dimensional extensibility of fibers towards tough fiber networks. Cellulose, 2017, 24, 191-205.	2.4	21
300	Agave tequilana Bagasse as Source of Cellulose Nanocrystals via Organosolv Treatment. BioResources, 2018, 13, .	0.5	21
301	Dissolution and Hydrolysis of Bleached Kraft Pulp Using Ionic Liquids. Polymers, 2019, 11, 673.	2.0	21
302	Disposable Microfluidic Sensor Based on Nanocellulose for Glucose Detection. Global Challenges, 2019, 3, 1800079.	1.8	21
303	Silver nanoparticle synthesis mediated by carboxylated cellulose nanocrystals. Green Materials, 2014, 2, 183-192.	1.1	20
304	Protein Adsorption Tailors the Surface Energies and Compatibility between Polylactide and Cellulose Nanofibrils. Biomacromolecules, 2017, 18, 1426-1433.	2.6	20
305	The effect of chemical additives on the strength, stiffness and elongation potential of paper. Nordic Pulp and Paper Research Journal, 2017, 32, 324-335.	0.3	20
306	Effect of heat treatment and pH on the efficiency of micro-diafiltration for the separation of native fat globules from cream in butter production. Journal of Membrane Science, 2018, 548, 99-107.	4.1	20

#	Article	IF	CITATIONS
307	Machine Learning assisted design of tailorâ€made nanocellulose films: A combination of experimental and computational studies. Polymer Composites, 2019, 40, 4013-4022.	2.3	20
308	Electrically Conductive Thin Films Based on Nanofibrillated Cellulose: Interactions with Water and Applications in Humidity Sensing. ACS Applied Materials & amp; Interfaces, 2020, 12, 36437-36448.	4.0	20
309	Mesophase characteristics of cellulose nanocrystal films prepared from electrolyte suspensions. Journal of Colloid and Interface Science, 2021, 599, 207-218.	5.0	20
310	Cellulose Nanofibers as Functional Biomaterial from Pineapple Stubbles via TEMPO Oxidation and Mechanical Process. Waste and Biomass Valorization, 2022, 13, 1749-1758.	1.8	20
311	Nanocellulose and Biopolymer Blends for High-Performance Water-Based Drilling Fluids. , 2018, , .		19
312	Cyclodextrin-Functionalized Fiber Yarns Spun from Deep Eutectic Cellulose Solutions for Nonspecific Hormone Capture in Aqueous Matrices. Biomacromolecules, 2018, 19, 652-661.	2.6	19
313	Nano-lignocellulose from recycled fibres in coatings from aqueous and ethanolic media: effect of residual lignin on wetting and offset printing quality. Nordic Pulp and Paper Research Journal, 2019, 34, 200-210.	0.3	19
314	Plasticized Cellulosic Films by Partial Esterification and Welding in Low-Concentration Ionic Liquid Electrolyte. Biomacromolecules, 2019, 20, 2105-2114.	2.6	19
315	Selfâ€Assembly of Soft Cellulose Nanospheres into Colloidal Gel Layers with Enhanced Protein Adsorption Capability for Nextâ€Generation Immunoassays. Small, 2020, 16, 2004702.	5.2	19
316	Microfibers synthesized by wet-spinning of chitin nanomaterials: mechanical, structural and cell proliferation properties. RSC Advances, 2020, 10, 29450-29459.	1.7	19
317	Lignin effect in castor oil-based elastomers: Reaching new limits in rheological and cushioning behaviors. Composites Science and Technology, 2021, 203, 108602.	3.8	19
318	Infiltration of Proteins in Cholesteric Cellulose Structures. Biomacromolecules, 2021, 22, 2067-2080.	2.6	19
319	Lignin Nanoparticle Nucleation and Growth on Cellulose and Chitin Nanofibers. Biomacromolecules, 2021, 22, 880-889.	2.6	19
320	Harmonic analysis of surface instability patterns on colloidal particles. Soft Matter, 2018, 14, 3387-3396.	1.2	18
321	Morphology-Controlled Synthesis of Colloidal Polyphenol Particles from Aqueous Solutions of Tannic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 16985-16990.	3.2	18
322	Nanocellulose and Nanochitin Cryogels Improve the Efficiency of Dye Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 10257-10265.	3.2	18
323	Associative structures formed from cellulose nanofibrils and nanochitins are pH-responsive and exhibit tunable rheology. Journal of Colloid and Interface Science, 2021, 588, 232-241.	5.0	18
324	Bioactive tri-component nanofibers from cellulose acetate/lignin//N-vanillidene-phenylthiazole copper-(II) complex for potential diaper dermatitis control. International Journal of Biological Macromolecules, 2022, 205, 703-718.	3.6	18

#	Article	IF	CITATIONS
325	Mesoscopic Simulations of the Phase Behavior of Aqueous EO ₁₉ PO ₂₉ EO ₁₉ Solutions Confined and Sheared by Hydrophobic and Hydrophilic Surfaces. ACS Applied Materials & Interfaces, 2012, 4, 87-95.	4.0	17
326	Survey of Soy Protein Flour as a Novel Dry Strength Agent for Papermaking Furnishes. Journal of Agricultural and Food Chemistry, 2012, 60, 9828-9833.	2.4	17
327	Nanocellulose and Its Derivatives for High-Performance Water-Based Fluids. , 2017, , .		17
328	Biobased aerogels with different surface charge as electrolyte carrierÂmembranes in quantum dot-sensitized solar cell. Cellulose, 2018, 25, 3363-3375.	2.4	17
329	Salt-Induced Colloidal Destabilization, Separation, Drying, and Redispersion in Aqueous Phase of Cationic and Anionic Nanochitins. Journal of Agricultural and Food Chemistry, 2018, 66, 9189-9198.	2.4	17
330	Changes in milk fat globules and membrane lipids under the shear fields of microfiltration and centrifugation. Journal of Membrane Science, 2019, 573, 218-225.	4.1	17
331	Exploiting electroconvective vortices in electrodialysis with high-frequency asymmetric bipolar pulses for desalination in overlimiting current regimes. Desalination, 2020, 474, 114190.	4.0	17
332	Shear-Dependent Structures of Flocculated Micro/Nanofibrillated Cellulose (MNFC) in Aqueous Suspensions. Biomacromolecules, 2020, 21, 3561-3570.	2.6	17
333	Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials. Journal of Polymer Engineering, 2021, 41, 746-758.	0.6	17
334	Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging. ACS Applied Materials & Interfaces, 2022, 14, 30236-30245.	4.0	17
335	Depletion Effects and Stabilization of Pickering Emulsions Prepared from a Dual Nanocellulose System. ACS Sustainable Chemistry and Engineering, 2022, 10, 9066-9076.	3.2	17
336	Surface and Friction Behavior of a Silicone Surfactant Adsorbed on Model Textiles Substrates. Industrial & Engineering Chemistry Research, 2010, 49, 8550-8557.	1.8	16
337	Phase-specific pore growth in ultrathin bicomponent films from cellulose-based polysaccharides. Soft Matter, 2011, 7, 10386.	1.2	16
338	Multilayers of Weak Polyelectrolytes of Low and High Molecular Mass Assembled on Polypropylene and Self-Assembled Hydrophobic Surfaces. Langmuir, 2011, 27, 4541-4550.	1.6	16
339	Improving the extensibility of paper: Sequential spray addition of gelatine and agar. Nordic Pulp and Paper Research Journal, 2015, 30, 452-460.	0.3	16
340	Paper-based plasmon-enhanced protein sensing by controlled nucleation of silver nanoparticles on cellulose. Cellulose, 2015, 22, 4027-4034.	2.4	16
341	Control of Micro- and Mesopores in Carbon Nanofibers and Hollow Carbon Nanofibers Derived from Cellulose Diacetate via Vapor Phase Infiltration of Diethyl Zinc. ACS Sustainable Chemistry and Engineering, 2018, 6, 13844-13853.	3.2	16
342	Two-Dimensional Antifouling Fluidic Channels on Nanopapers for Biosensing. Biomacromolecules, 2019, 20, 1036-1044.	2.6	16

#	Article	IF	CITATIONS
343	Coupled Effects of Fibril Width, Residual and Mechanically Liberated Lignin on the Flow, Viscoelasticity, and Dewatering of Cellulosic Nanomaterials. Biomacromolecules, 2020, 21, 4123-4134.	2.6	16
344	Direct Ink Writing of Biocompatible Nanocellulose and Chitosan Hydrogels for Implant Mesh Matrices. ACS Polymers Au, 2022, 2, 97-107.	1.7	16
345	Viscoelastic Properties of Isomeric Alkylglucoside Surfactants Studied by Surface Light Scattering. Journal of Physical Chemistry B, 2005, 109, 22440-22448.	1.2	15
346	Measurement of Cellulase Activity with Piezoelectric Resonators. ACS Symposium Series, 2007, , 478-494.	0.5	15
347	Bioâ€based Wrinkled Surfaces Harnessed from Biological Design Principles of Wood and Peroxidase Activity. ChemSusChem, 2015, 8, 3892-3896.	3.6	15
348	Foam Processing of Fibers As a Sustainable Alternative to Wet-Laying: Fiber Web Properties and Cause–Effect Relations. ACS Sustainable Chemistry and Engineering, 2018, 6, 14423-14431.	3.2	15
349	Surface Activity and Foaming Capacity of Aggregates Formed between an Anionic Surfactant and Non-Cellulosics Leached from Wood Fibers. Biomacromolecules, 2019, 20, 2286-2294.	2.6	15
350	Mesoporous Carbon Microfibers for Electroactive Materials Derived from Lignocellulose Nanofibrils. ACS Sustainable Chemistry and Engineering, 2020, 8, 8549-8561.	3.2	15
351	Impact of incubation conditions and post-treatment on the properties of bacterial cellulose membranes for pressure-driven filtration. Carbohydrate Polymers, 2021, 251, 117073.	5.1	15
352	Nanocomposite additive of SiO2/TiO2/nanocellulose on waterborne coating formulations for mechanical and aesthetic properties stability on wood. Materials Today Communications, 2021, 29, 102990.	0.9	15
353	Hollow Filaments Synthesized by Dry-Jet Wet Spinning of Cellulose Nanofibrils: Structural Properties and Thermoregulation with Phase-Change Infills. ACS Applied Polymer Materials, 2022, 4, 2908-2916.	2.0	15
354	Fiber nanotechnology: a new platform for "green―research and technological innovations. Cellulose, 2007, 14, 539-542.	2.4	14
355	Evaluation of O/W microemulsions to penetrate the capillary structure of woody biomass: interplay between composition and formulation in green processing. Green Chemistry, 2013, 15, 3377.	4.6	14
356	Effects of Composition of Oligo(ethylene glycol)-Based Mixed Monolayers on Peptide Grafting and Human Immunoglobulin Detection. Journal of Physical Chemistry C, 2014, 118, 5361-5373.	1.5	14
357	Interactions between fungal cellulases and films of nanofibrillar cellulose determined by a quartz crystal microbalance with dissipation monitoring (QCM-D). Cellulose, 2017, 24, 1947-1956.	2.4	14
358	Electrolyte membranes based on ultrafine fibers of acetylated cellulose for improved and long-lasting dye-sensitized solar cells. Cellulose, 2019, 26, 6151-6163.	2.4	14
359	Structural Arrest and Phase Transition in Glassy Nanocellulose Colloids. Langmuir, 2020, 36, 979-985.	1.6	14
360	Polydopamine-treated hierarchical cellulosic fibers as versatile reinforcement of polybutylene succinate biocomposites for electromagnetic shielding. Carbohydrate Polymers, 2022, 277, 118818.	5.1	14

#	Article	IF	CITATIONS
361	Superstable Wet Foams and Lightweight Solid Composites from Nanocellulose and Hydrophobic Particles. ACS Nano, 2021, 15, 19712-19721.	7.3	14
362	Structured Ultraâ€Flyweight Aerogels by Interfacial Complexation: Selfâ€Assembly Enabling Multiscale Designs. Small, 2022, 18, e2200220.	5.2	14
363	Effect of Fenton's reagent on O/W emulsions stabilized by black liquor. Journal of Colloid and Interface Science, 2006, 294, 182-186.	5.0	13
364	A Facile and Green Method to Hydrophobize Films of Cellulose Nanofibrils and Silica by Laccaseâ€Mediated Coupling of Nonpolar Colloidal Particles. ChemSusChem, 2014, 7, 2868-2878.	3.6	13
365	Acid-Generated Soy Protein Hydrolysates and Their Interfacial Behavior on Model Surfaces. Biomacromolecules, 2014, 15, 4336-4342.	2.6	13
366	Dewatering of MNFC containing microfibrils and microparticles from soybean hulls: mechanical and transport properties of hybrid films. Cellulose, 2015, 22, 3919-3928.	2.4	13
367	Alternative chemo-enzymatic treatment for homogeneous and heterogeneous acetylation of wood fibers. Cellulose, 2018, 25, 5323-5336.	2.4	13
368	Bubble Attachment to Cellulose and Silica Surfaces of Varied Surface Energies: Wetting Transition and Implications in Foam Forming. Langmuir, 2020, 36, 7296-7308.	1.6	13
369	Intermolecular self-assembly of dopamine-conjugated carboxymethylcellulose and carbon nanotubes toward supertough filaments and multifunctional wearables. Chemical Engineering Journal, 2021, 416, 128981.	6.6	13
370	Revisiting Cation Complexation and Hydrogen Bonding of Single-Chain Polyguluronate Alginate. Biomacromolecules, 2021, 22, 4027-4036.	2.6	13
371	Upcycling Byproducts from Insect (Fly Larvae and Mealworm) Farming into Chitin Nanofibers and Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 13618-13629.	3.2	13
372	Biological activity of multicomponent bio-hydrogels loaded with tragacanth gum. International Journal of Biological Macromolecules, 2022, 215, 691-704.	3.6	13
373	Nanocellulose and Proteins: Exploiting Their Interactions for Production, Immobilization, and Synthesis of Biocompatible Materials. Advances in Polymer Science, 2015, , 207-224.	0.4	12
374	Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer. Analytical and Bioanalytical Chemistry, 2016, 408, 1829-1841.	1.9	12
375	Quantitative Calorimetric Studies of the Chiral Nematic Mesophase in Aqueous Cellulose Nanocrystal Suspensions. Langmuir, 2020, 36, 10830-10837.	1.6	12
376	Talc reinforcement of polylactide and biodegradable polyester blends via injectionâ€molding and pilotâ€scale film extrusion. Journal of Applied Polymer Science, 2021, 138, 51225.	1.3	12
377	Influence of Charge and Heat on the Mechanical Properties of Scaffolds from Ionic Complexation of Chitosan and Carboxymethyl Cellulose. ACS Biomaterials Science and Engineering, 2021, 7, 3618-3632.	2.6	12
378	Pickering emulgels reinforced with host–guest supramolecular inclusion complexes for high fidelity direct ink writing. Materials Horizons, 2022, 9, 835-840.	6.4	12

#	Article	IF	CITATIONS
379	Bacterial nanocellulose enables auxetic supporting implants. Carbohydrate Polymers, 2022, 284, 119198.	5.1	12
380	Surface functionalization and size modulate the formation of reactive oxygen species and genotoxic effects of cellulose nanofibrils. Particle and Fibre Toxicology, 2022, 19, 19.	2.8	12
381	Highly regioselective surface acetylation of cellulose and shaped cellulose constructs in the gas-phase. Green Chemistry, 2022, 24, 5604-5613.	4.6	12
382	Adsorption of Poly(ethylene oxide)-b-poly(Îμ-caprolactone) Copolymers at the Silicaâ^'Water Interface. Langmuir, 2005, 21, 2930-2940.	1.6	11
383	Permeation of a cationic polyelectrolyte into meso-porous silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 364, 1-6.	2.3	11
384	Permeation of a cationic polyelectrolyte into mesoporous silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 381, 1-6.	2.3	11
385	The unusual interactions between polymer grafted cellulose nanocrystal aggregates. Soft Matter, 2013, 9, 8965.	1.2	11
386	Effect of charge balance and dosage of polyelectrolyte complexes on the shear resistance of mineral floc strength and reversibility. Journal of Colloid and Interface Science, 2015, 448, 73-78.	5.0	11
387	Use of a Branched Linker for Enhanced Biosensing Properties in IgC Detection from Mixed Chinese Hamster Ovary Cell Cultures. Bioconjugate Chemistry, 2019, 30, 815-825.	1.8	11
388	Cellulose dissolution in aqueous NaOH–ZnO: cellulose reactivity and the role of ZnO. Cellulose, 2021, 28, 1267-1281.	2.4	11
389	Chitin–amyloid synergism and their use as sustainable structural adhesives. Journal of Materials Chemistry A, 2021, 9, 19741-19753.	5.2	11
390	Charge and the dry-strength performance of polyampholytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 33-40.	2.3	10
391	Experimental and Computational Study of the Effect of Alcohols on the Solution and Adsorption Properties of a Nonionic Symmetric Triblock Copolymer. Journal of Physical Chemistry B, 2012, 116, 1289-1298.	1.2	10
392	Lipoxygenase-mediated peroxidation of model plant extractives. Industrial Crops and Products, 2017, 104, 253-262.	2.5	10
393	Impact of oxidative carbonization on structure development of loblolly pine-derived biochar investigated by nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy. Diamond and Related Materials, 2019, 96, 140-147.	1.8	10
394	Nanocellulose Applications in Papermaking. Biofuels and Biorefineries, 2019, , 61-96.	0.5	10
395	Benchmarking supramolecular adhesive behavior of nanocelluloses, cellulose derivatives and proteins. Carbohydrate Polymers, 2022, 292, 119681.	5.1	10
396	Dependency of polyelectrolyte complex stoichiometry on the order of addition2. Aluminum chloride and poly-vinylsulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 246, 71-79.	2.3	9

#	Article	IF	CITATIONS
397	Distinctive electrokinetic behavior of nanoporous silica particles treated with cationic polyelectrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 292, 271-278.	2.3	9
398	Barley Straw (Hordeum vulgare) as a Supplementary Raw Material for Eucalyptus camaldulensis and Pinus sylvestris Kraft Pulp in the Paper Industry. BioResources, 2015, 10, .	0.5	9
399	Role of textile substrate hydrophobicity on the adsorption of hydrosoluble nonionic block copolymers. Journal of Colloid and Interface Science, 2015, 454, 89-96.	5.0	9
400	Dynamics of cyclodimerization and viscoelasticity of photoâ€crosslinkable <scp>PVA</scp> . Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 345-355.	2.4	9
401	In-Plane Compression and Biopolymer Permeation Enable Super-stretchable Fiber Webs for Thermoforming toward 3-D Structures. ACS Sustainable Chemistry and Engineering, 2017, 5, 9114-9125.	3.2	9
402	Self-association and aggregation of kraft lignins via electrolyte and nonionic surfactant regulation: stabilization of lignin particles and effects on filtration. Nordic Pulp and Paper Research Journal, 2017, 32, 572-585.	0.3	9
403	Development of Self-Bonded Fiberboards from Fiber of Leaf Plantain: Effect of Water and Organic Extractives Removal. BioResources, 2014, 10, .	0.5	9
404	Aspects of retention and formation. Nordic Pulp and Paper Research Journal, 2006, 21, 638-645.	0.3	9
405	Adsorption of polyalkyl glycol ethers and triblock nonionic polymers on PET. Journal of Colloid and Interface Science, 2014, 420, 174-181.	5.0	8
406	Controlledâ€release drug carriers based hierarchical silica microtubes templated from cellulose acetate nanofibers. Journal of Applied Polymer Science, 2015, 132, .	1.3	8
407	UV-ozone patterning of micro-nano fibrillated cellulose (MNFC) with alkylsilane self-assembled monolayers. Cellulose, 2016, 23, 1847-1857.	2.4	8
408	Experimental and Predictive Description of the Morphology of Wet-Spun Fibers. ACS Applied Polymer Materials, 2019, 1, 1280-1290.	2.0	8
409	Migration Effects of Fluorochemical Melt Additives for Alcohol Repellency in Polypropylene Nonwoven Materials. ACS Applied Materials & Interfaces, 2020, 12, 36787-36798.	4.0	8
410	Effect of particle surface corrugation on colloidal interactions. Journal of Colloid and Interface Science, 2020, 579, 794-804.	5.0	8
411	Cross-Linked and Surface-Modified Cellulose Acetate as a Cover Layer for Paper-Based Electrochromic Devices. ACS Applied Polymer Materials, 2021, 3, 2393-2401.	2.0	8
412	Editorial: Nanocellulose: A Multipurpose Advanced Functional Material. Frontiers in Bioengineering and Biotechnology, 2021, 9, 738779.	2.0	8
413	Cellulose nanofibers and the film-formation dilemma: Drying temperature and tunable optical, mechanical and wetting properties of nanocomposite films composed of waterborne sulfopolyesters. Journal of Colloid and Interface Science, 2021, 598, 369-378.	5.0	8
414	Simple synthesis of self-assembled nacre-like materials with 3D periodic layers from nanochitin <i>via</i> hydrogelation and mineralization. Green Chemistry, 2022, 24, 1308-1317.	4.6	8

#	Article	IF	CITATIONS
415	Competing Effects of Hydration and Cation Complexation in Single-Chain Alginate. Biomacromolecules, 2022, 23, 1949-1957.	2.6	8
416	Dependency of polyelectrolyte complex stoichiometry on the order of addition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 246, 71-79.	2.3	7
417	Space-resolved thermal properties of thermoplastics reinforced with carbon nanotubes. Journal of Thermal Analysis and Calorimetry, 2017, 127, 2059-2074.	2.0	7
418	Electrically-Conductive Sub-Micron Carbon Particles from Lignin: Elucidation of Nanostructure and Use as Filler in Cellulose Nanopapers. Nanomaterials, 2018, 8, 1055.	1.9	7
419	Cellulose nanocrystals for gelation and percolation-induced reinforcement of a photocurable poly(vinyl alcohol) derivative. Soft Matter, 2020, 16, 8602-8611.	1.2	7
420	3D printed manifolds for improved flow management in electrodialysis operation for desalination. Desalination, 2021, 505, 114996.	4.0	7
421	Energy pellets from whole-wheat straw processed with a deep eutectic solvent: A comprehensive thermal, molecular and environmental evaluation. Renewable Energy, 2022, 194, 902-911.	4.3	7
422	Effect of Surface Modification on the Pulmonary and Systemic Toxicity of Cellulose Nanofibrils. Biomacromolecules, 2022, 23, 2752-2766.	2.6	7
423	Mountain Pine Beetle-Killed Lodgepole Pine for the Production of Submicron Lignocellulose Fibrils. Forest Science, 2014, 60, 502-511.	0.5	6
424	Influence of Operating Variables and Model to Minimize the Use of Anthraquinone in the Soda-Anthraquinone Pulping of Barley Straw. BioResources, 2015, 10, .	0.5	6
425	Anion-Specific Water Interactions with Nanochitin: Donnan and Osmotic Pressure Effects as Revealed by Quartz Microgravimetry. Langmuir, 2021, 37, 11242-11250.	1.6	6
426	Desalination by pulsed electrodialysis reversal: Approaching fully closed-loop water systems in wood pulp mills. Journal of Environmental Management, 2021, 298, 113518.	3.8	6
427	Electrochemical sensing of Staphylococcus aureus based on conductive anti-fouling interface. Mikrochimica Acta, 2022, 189, 97.	2.5	6
428	Synthesis of Thermoplastic Starch-Bacterial Cellulose Nanocomposites viain situFermentation. Journal of the Brazilian Chemical Society, 2014, , .	0.6	5
429	Effect of Lipoxygenase Oxidation on Surface Deposition of Unsaturated Fatty Acids. Langmuir, 2017, 33, 4559-4566.	1.6	5
430	Characterization of Residues from Chilean Blueberry Bushes: A Potential Source of Cellulose. BioResources, 2018, 13, .	0.5	5
431	Partially acetylated cellulose nanofibrils from <i>Agave tequilana</i> bagasse and Pickering stabilization. Journal of Dispersion Science and Technology, 2022, 43, 1391-1398.	1.3	5
432	Partitioning of the milk fat globule membrane between buttermilk and butter serum is determined by the thermal behaviour of the fat globules. International Dairy Journal, 2021, 112, 104863.	1.5	5

#	Article	IF	CITATIONS
433	High frequency pulsed electrodialysis of acidic filtrate in kraft pulping. Journal of Environmental Management, 2021, 282, 111891.	3.8	5
434	Particle size and fat encapsulation define the colloidal dispersibility and reconstitution of growing-up milk powder. Powder Technology, 2021, 391, 133-141.	2.1	5
435	Using micro- and nanofibrillated cellulose as a means to reduce weight of paper products: A review. BioResources, 2020, 15, 4553-4590.	0.5	5
436	Comparison between Interaction Forces at Air/Liquid and Solid/Liquid Interfaces in the Presence of Non-Ionic Surfactants. Tenside, Surfactants, Detergents, 2004, 41, 174-179.	0.5	5
437	Self-association and aggregation of kraft lignins via electrolyte and nonionic surfactant regulation: stabilization of lignin particles and effects on filtration - OPEN ACCESS. Nordic Pulp and Paper Research Journal, 2017, 32, 572-585.	0.3	5
438	3D-Printed Thermoset Biocomposites Based on Forest Residues by Delayed Extrusion of Cold Masterbatch (DECMA). ACS Sustainable Chemistry and Engineering, 2021, 9, 13979-13987.	3.2	5
439	Upcycling agro-industrial blueberry waste into platform chemicals and structured materials for application in marine environments. Green Chemistry, 2022, 24, 3794-3804.	4.6	5
440	Machine learning as a tool to engineer microstructures: Morphological prediction of tannin-based colloids using Bayesian surrogate models. MRS Bulletin, 2022, 47, 29-37.	1.7	5
441	Mechanisms of Strain-Induced Interfacial Strengthening of Wet-Spun Filaments. ACS Applied Materials & Interfaces, 2022, 14, 16809-16819.	4.0	5
442	Permeation of a cationic polyelectrolyte into mesoporous silica. Part 2. Effects of time and pore size on streaming potential. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 364, 7-15.	2.3	4
443	Asymmetric bipolar switch device for electrochemical processes. AIP Advances, 2019, 9, 085011.	0.6	4
444	Interfacial Contributions in Nanodiamond-Reinforced Polymeric Fibers. Journal of Physical Chemistry B, 2021, 125, 10312-10323.	1.2	4
445	Study on Charge Distribution of Carboxymethylated Cotton Fabric by Streaming Potential/Current Measurements. AATCC Journal of Research, 2015, 2, 13-19.	0.3	4
446	Surface energy properties of lignin particles studied by inverse gas chromatography and interfacial adhesion in polyester composites with electromagnetic transparency. Cellulose, 2022, 29, 2961-2973.	2.4	4
447	Dispersing swimming microalgae in self-assembled nanocellulose suspension: Unveiling living colloid dynamics in cholesteric liquid crystals. Journal of Colloid and Interface Science, 2022, 622, 978-985.	5.0	4
448	Adsorption of Polyelectrolytes on Mica. , 2015, , 245-261.		3
449	Bicomponent Cellulose Fibrils and Minerals Afford Wicking Channels Stencil-Printed on Paper for Rapid and Reliable Fluidic Platforms. ACS Applied Polymer Materials, 2021, 3, 5536-5546.	2.0	3
450	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues (Adv. Mater. 43/2021). Advanced Materials, 2021, 33, 2170342.	11.1	3

#	Article	IF	CITATIONS
451	Evaluation of Adsorbed Polyampholyte Layers by Using Quartz Crystal Microbalance. Computer Aided Chemical Engineering, 2009, 27, 1929-1934.	0.3	2
452	Self- and Directed-Assembling of Bionanomaterials. Materials and Energy, 2014, , 1-5.	2.5	2
453	Electrospinning of Nanocellulose-Based Materials. Materials and Energy, 2014, , 163-183.	2.5	2
454	Loading of Iron (II, III) Oxide Nanoparticles in Cryogels Based on Microfibrillar Cellulose for Heavy Metal Ion Separation. Advances in Polymer Technology, 2020, 2020, 1-8.	0.8	2
455	Plantâ€Derived Hydrogels: Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels (Adv. Mater. 28/2021). Advanced Materials, 2021, 33, 2170218.	11.1	2
456	Sugar surfactants in paper recycling. Nordic Pulp and Paper Research Journal, 2009, 24, 107-111.	0.3	2
457	Amphoteric polymers to improve paper dry strength. The Journal of Engineering and Exact Sciences, 2015, 1, 65-79.	0.0	2
458	Effect of filler additions on pilot-scale extrusion coating of paperboard with PLA-based blends. Nordic Pulp and Paper Research Journal, 2022, .	0.3	2
459	Mineral-filled biopolyester coatings for paperboard packaging materials: barrier, sealability, convertability and biodegradability properties. Nordic Pulp and Paper Research Journal, 2022, .	0.3	2
460	Multifunctional Aqueous Ferrofluid Stabilized by Cellulose Nanofibrils with Long Term Stability. Chemical Engineering Journal, 2022, , 136252.	6.6	2
461	Oxidative Chemistry of Lignin in Supercritical Carbon Dioxide and Expanded Liquids. ACS Symposium Series, 2007, , 311-331.	0.5	1
462	Molecular Dynamics Simulations of the Thermal Stability of Crystalline Cellulose Surfaces Coated with Oleic Acid. ACS Symposium Series, 2012, , 191-208.	0.5	1
463	Production of Bacterial Cellulose: Use of a New Strain of Microorganism. Materials and Energy, 2014, , 105-122.	2.5	1
464	Automated estimation of contact angle on hydrophobic fibers using a microrobotic platform. , 2016, , .		1
465	Strengthening wood fiber networks by adsorption of complexes of chitosan with dialdehyde starch. Nordic Pulp and Paper Research Journal, 2017, 32, 683-690.	0.3	1
466	Measuring the Interfacial Behavior of Sugar-Based Surfactants to Link Molecular Structure and Uses. , 2019, , 387-412.		1
467	Strengthening wood fiber networks by adsorption of complexes of chitosan with dialdehyde starch. Nordic Pulp and Paper Research Journal, 2017, 32, 683-690.	0.3	1
468	Enzymatic Treatment as a Pre‣tep to Remove Cellulose Films from Sensors. Macromolecular Symposia, 2011, 299-300, 107-112.	0.4	0

#	Article	IF	CITATIONS
469	Thin Film Deposition Techniques. Materials and Energy, 2014, , 7-18.	2.5	0
470	Selfâ€Assembled Nanorods and Microspheres for Functional Photonics: Retroreflector Meets Microlens Array (Advanced Optical Materials 9/2021). Advanced Optical Materials, 2021, 9, 2170034.	3.6	0
471	Investigation of Adsorption Behaviors of Amphoteric Polyacrylamide on Pulp Fiber. Kami Pa Gikyoshi/Japan Tappi Journal, 2010, 64, 595-603.	0.1	0
472	High-throughput Synthesis of Lignin Particles (~30 nm to ~2 Âμm) via Aerosol Flow Reactor: Size Fractionation and Utilization in Pickering Emulsions. Oleoscience, 2021, 21, 463-469.	0.0	0
473	Microporous Membranes for Ultrafast and Energy-Efficient Removal of Antibiotics Through Polyphenol-Mediated Nanointerfaces. SSRN Electronic Journal, 0, , .	0.4	0