Nicola Margiotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9112975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic implants in vivo guiding sorafenib liver delivery by superparamagnetic solid lipid nanoparticles. Journal of Colloid and Interface Science, 2022, 608, 239-254.	5.0	17
2	Synthesis and characterization of new platinum(II) complexes with cyclic iminoether-type ligands having the azomethine group out of cycle. Inorganica Chimica Acta, 2022, 530, 120655.	1.2	1
3	Interaction of Copper Trafficking Proteins with the Platinum Anticancer Drug Kiteplatin. ChemMedChem, 2022, 17, .	1.6	3
4	In Situ Formation of Zwitterionic Ligands: Changing the Passivation Paradigms of CsPbBr ₃ Nanocrystals. Nano Letters, 2022, 22, 4437-4444.	4.5	30
5	Improvement of Kiteplatin Efficacy by a Benzoato Pt(IV) Prodrug Suitable for Oral Administration. International Journal of Molecular Sciences, 2022, 23, 7081.	1.8	9
6	Selenium-doped hydroxyapatite nanoparticles for potential application in bone tumor therapy. Journal of Inorganic Biochemistry, 2021, 215, 111334.	1.5	26
7	Implementation of Sustainable Solvents in Green Polymerization Approaches. Macromolecular Chemistry and Physics, 2021, 222, 2000382.	1.1	5
8	Pt(<scp>iv</scp>) complexes based on cyclohexanediamines and the histone deacetylase inhibitor 2-(2-propynyl)octanoic acid: synthesis, characterization, cell penetration properties and antitumor activity. Dalton Transactions, 2021, 50, 4663-4672.	1.6	11
9	Bone tumor–targeted delivery of theranostic 195mPt-bisphosphonate complexes promotes killing of metastatic tumor cells. Materials Today Bio, 2021, 9, 100088.	2.6	12
10	Size-tunable and stable cesium lead-bromide perovskite nanocubes with near-unity photoluminescence quantum yield. Nanoscale Advances, 2021, 3, 3918-3928.	2.2	9
11	New Oxaliplatin-Pyrophosphato Analogs with Improved In Vitro Cytotoxicity. Molecules, 2021, 26, 3417.	1.7	4
12	Effect of chirality on the anticancer activity of Pt(<scp>ii</scp>) and Pt(<scp>iv</scp>) complexes containing 1 <i>R</i> ,2 <i>R</i> and 1 <i>S</i> ,2 <i>S</i> enantiomers of the <i>trans</i> -1,2-diamino-4-cyclohexene ligand (DACHEX), an analogue of diaminocyclohexane used in oralightin_Dateon Transactions, 2021, 50, 15655-15668	1.6	7
13	Luminescent PLGA Nanoparticles for Delivery of Darunavir to the Brain and Inhibition of Matrix Metalloproteinase-9, a Relevant Therapeutic Target of HIV-Associated Neurological Disorders. ACS Chemical Neuroscience, 2021, 12, 4286-4301.	1.7	9
14	Insights into the role of the lead/surfactant ratio in the formation and passivation of cesium lead bromide perovskite nanocrystals. Nanoscale, 2020, 12, 623-637.	2.8	48
15	Oneâ€Pot Synthesis of New Organometallic Compounds with Platinumâ€Carbon Bond. European Journal of Inorganic Chemistry, 2020, 2020, 1018-1026.	1.0	1
16	CsPbBr3 Nanocrystals-Based Polymer Nanocomposite Films: Effect of Polymer on Spectroscopic Properties and Moisture Tolerance. Energies, 2020, 13, 6730.	1.6	6
17	PEGylated solid lipid nanoparticles for brain delivery of lipophilic kiteplatin Pt(IV) prodrugs: An in vitro study. International Journal of Pharmaceutics, 2020, 583, 119351.	2.6	45
18	Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus. Scientific Reports, 2020, 10, 9052.	1.6	32

#	Article	IF	CITATIONS
19	Preclinical evaluation of platinum-loaded hydroxyapatite nanoparticles in an embryonic zebrafish xenograft model. Nanoscale, 2020, 12, 13582-13594.	2.8	13
20	Platinum-loaded, selenium-doped hydroxyapatite nanoparticles selectively reduce proliferation of prostate and breast cancer cells co-cultured in the presence of stem cells. Journal of Materials Chemistry B, 2020, 8, 2792-2804.	2.9	29
21	Targeting of radioactive platinum-bisphosphonate anticancer drugs to bone of high metabolic activity. Scientific Reports, 2020, 10, 5889.	1.6	15
22	Platinum(IV) Complexes of trans-1,2-diamino-4-cyclohexene: Prodrugs Affording an Oxaliplatin Analogue that Overcomes Cancer Resistance. International Journal of Molecular Sciences, 2020, 21, 2325.	1.8	12
23	Green Fluorescent Terbium (III) Complex Doped Silica Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 3139.	1.8	15
24	A Pt(IV) prodrug of kiteplatin with the bone-targeting pyrophosphate ligand. Inorganica Chimica Acta, 2019, 494, 98-104.	1.2	6
25	Quantitative imaging of platinum-based antitumor complexes in bone tissue samples using LA-ICP-MS. Journal of Trace Elements in Medicine and Biology, 2019, 54, 98-102.	1.5	15
26	Post-synthesis phase and shape evolution of CsPbBr3 colloidal nanocrystals: The role of ligands. Nano Research, 2019, 12, 1155-1166.	5.8	49
27	A minimal structural variation can overcome tumour resistance of oxaliplatin: the case of 4,5-dehydrogenation of the cyclohexane ring. RSC Advances, 2019, 9, 32448-32452.	1.7	7
28	Synthesis, characterization, and in vitro cytotoxicity of a Kiteplatin-Ibuprofen Pt(IV) prodrug. Inorganica Chimica Acta, 2018, 472, 221-228.	1.2	31
29	Luminescent Oil-Soluble Carbon Dots toward White Light Emission: A Spectroscopic Study. Journal of Physical Chemistry C, 2018, 122, 839-849.	1.5	43
30	Drug Targeting and Delivery of Platinum Chemotherapeutics \hat{a} [*] †. , 2018, , .		0
31	Dual-acting antitumor Pt(<scp>iv</scp>) prodrugs of kiteplatin with dichloroacetate axial ligands. Dalton Transactions, 2018, 47, 7144-7158.	1.6	21
32	Multi-Acting Mitochondria-Targeted Platinum(IV) Prodrugs of Kiteplatin with α-Lipoic Acid in the Axial Positions. International Journal of Molecular Sciences, 2018, 19, 2050.	1.8	15
33	Cytotoxic phenanthroline derivatives alter metallostasis and redox homeostasis in neuroblastoma cells. Oncotarget, 2018, 9, 36289-36316.	0.8	18
34	Bisphosphonateâ€Functionalized Imaging Agents, Antiâ€Tumor Agents and Nanocarriers for Treatment of Bone Cancer. Advanced Healthcare Materials, 2017, 6, 1601119.	3.9	39
35	Novel Kiteplatin Pyrophosphate Derivatives with Improved Efficacy. Inorganic Chemistry, 2017, 56, 7482-7493.	1.9	10
36	Metal complexes targeting the Translocator Protein 18 kDa (TSPO). Coordination Chemistry Reviews, 2017, 341, 1-18.	9.5	23

#	Article	IF	CITATIONS
37	Anticancer kiteplatin pyrophosphate derivatives show unexpected target selectivity for DNA. Dalton Transactions, 2017, 46, 14139-14148.	1.6	11
38	Cisplatin, Oxaliplatin, and Kiteplatin Subcellular Effects Compared in a Plant Model. International Journal of Molecular Sciences, 2017, 18, 306.	1.8	5
39	Synthesis, Characterization, and Cytotoxicity of the First Oxaliplatin Pt(IV) Derivative Having a TSPO Ligand in the Axial Position. International Journal of Molecular Sciences, 2016, 17, 1010.	1.8	19
40	Synthesis and Evaluation of Tricarbonyl 99mTc-Labeled 2-(4-Chloro)phenyl-imidazo[1,2-a]pyridine Analogs as Novel SPECT Imaging Radiotracer for TSPO-Rich Cancer. International Journal of Molecular Sciences, 2016, 17, 1085.	1.8	14
41	Cytotoxicity Study on Luminescent Nanocrystals Containing Phospholipid Micelles in Primary Cultures of Rat Astrocytes. PLoS ONE, 2016, 11, e0153451.	1.1	18
42	Hydroxyapatite nanocrystals as a smart, pH sensitive, delivery system for kiteplatin. Dalton Transactions, 2016, 45, 13187-13195.	1.6	28
43	Encapsulation of lipophilic kiteplatin Pt(<scp>iv</scp>) prodrugs in PLGA-PEG micelles. Dalton Transactions, 2016, 45, 13070-13081.	1.6	27
44	Controlled Release of Chemotherapeutic Platinum–Bisphosphonate Complexes from Injectable Calcium Phosphate Cements. Tissue Engineering - Part A, 2016, 22, 788-800.	1.6	24
45	Dual-functionalisation of gelatine nanoparticles with an anticancer platinum(<scp>ii</scp>)–bisphosphonate complex and mineral-binding alendronate. RSC Advances, 2016, 6, 113025-113037.	1.7	8
46	Kiteplatin: Differential binding between GSH and GMP. Inorganica Chimica Acta, 2016, 452, 130-136.	1.2	3
47	Cytotoxicity-boosting of kiteplatin by Pt(IV) prodrugs with axial benzoate ligands. Journal of Inorganic Biochemistry, 2016, 160, 85-93.	1.5	18
48	Computational evidence for structural consequences of kiteplatin damage on DNA. Journal of Biological Inorganic Chemistry, 2015, 20, 35-48.	1.1	12
49	DNA fragment conformations in adducts with Kiteplatin. Dalton Transactions, 2015, 44, 3544-3556.	1.6	10
50	Monofunctional Platinum(II) Complexes with Potent Tumor Cell Growth Inhibitory Activity: The Effect of a Hydrogenâ€Bond Donor/Acceptor Nâ€Heterocyclic Ligand. ChemMedChem, 2014, 9, 1161-1168.	1.6	17
51	Reactivity of kiteplatin with S-donor biomolecules and nucleotides. Dalton Transactions, 2014, 43, 12851-12859.	1.6	15
52	Synthesis, characterization, and in vitro evaluation of new coordination complexes of platinum(<scp>ii</scp>) and rhenium(<scp>i</scp>) with a ligand targeting the translocator protein (TSPO). Dalton Transactions, 2014, 43, 16252-16264.	1.6	16
53	Synthesis, Characterization, and in Vitro Evaluation of a New TSPO-Selective Bifunctional Chelate Ligand. ACS Medicinal Chemistry Letters, 2014, 5, 685-689.	1.3	21
54	A model radiopharmaceutical agent targeted to translocator protein 18 kDa (TSPO). Dalton Transactions, 2013, 42, 10112.	1.6	14

#	Article	IF	CITATIONS
55	NMR Investigation of the Spontaneous Thermal- and/or Photoinduced Reduction of trans Dihydroxido Pt(IV) Derivatives. Inorganic Chemistry, 2013, 52, 2393-2403.	1.9	26
56	Synthesis, Characterization, and Binding to the Translocator Protein (18 kDa, TSPO) of a New Rhenium Complex as a Model of Radiopharmaceutical Agents. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1606-1612.	0.6	13
57	Thermodynamic and Mechanistic Insights into Translesion DNA Synthesis Catalyzed by Yâ€Family DNA Polymerase Across a Bulky Doubleâ€Base Lesion of an Antitumor Platinum Drug. Chemistry - A European Journal, 2012, 18, 15439-15448.	1.7	29
58	Silica xerogels and hydroxyapatite nanocrystals for the local delivery of platinum–bisphosphonate complexes in the treatment of bone tumors: A mini-review. Journal of Inorganic Biochemistry, 2012, 117, 237-247.	1.5	56
59	Dinuclear Pt(ii)-bisphosphonate complexes: a scaffold for multinuclear or different oxidation state platinum drugs. Dalton Transactions, 2012, 41, 9689.	1.6	26
60	Nanocrystalline carbonate-apatites: role of Ca/P ratio on the upload and release of anticancer platinum bisphosphonates. Nanoscale, 2012, 4, 206-217.	2.8	68
61	Metallo-drugs in the treatment of malignant pleural mesothelioma. Inorganica Chimica Acta, 2012, 393, 64-74.	1.2	15
62	Revisiting [PtCl ₂ (<i>cis</i> -1,4-DACH)]: An Underestimated Antitumor Drug with Potential Application to the Treatment of Oxaliplatin-Refractory Colorectal Cancer. Journal of Medicinal Chemistry, 2012, 55, 7182-7192.	2.9	65
63	Cationic intermediates in oxidative addition reactions of Cl2 to [PtCl2(cis-1,4-DACH)]. Dalton Transactions, 2011, 40, 12877.	1.6	17
64	Platinum–bisphosphonate complexes have proven to be inactive chemotherapeutics targeted for malignant mesothelioma because of inappropriate hydrolysis. Journal of Inorganic Biochemistry, 2011, 105, 548-557.	1.5	20
65	Cytotoxicity, cellular uptake, glutathione and DNA interactions of an antitumor large-ring PtII chelate complex incorporating the cis-1,4-diaminocyclohexane carrier ligand. Biochemical Pharmacology, 2010, 79, 552-564.	2.0	48
66	Platinum(II) Complexes with Bioactive Carrier Ligands Having High Affinity for the Translocator Protein. Journal of Medicinal Chemistry, 2010, 53, 5144-5154.	2.9	64
67	Synthesis, characterization, and cytotoxicity of dinuclear platinum-bisphosphonate complexes to be used as prodrugs in the local treatment of bone tumours. Dalton Transactions, 2009, , 10904.	1.6	35
68	Smart delivery of antitumoral platinum complexes from biomimetic hydroxyapatite nanocrystals. Journal of Materials Chemistry, 2009, 19, 8385.	6.7	84
69	A new dinuclear platinum complex with a nitrogen-containing geminal bisphosphonate as potential anticancer compound specifically targeted to bone tissues. Journal of Inorganic Biochemistry, 2008, 102, 2078-2086.	1.5	29
70	Conformer Distribution in (<i>cis</i> -1,4-DACH)bis(guanosine-5′-phosphate)platinum(II) Adducts: A Reliable Model for DNA Adducts of Antitumoral Cisplatin. Inorganic Chemistry, 2008, 47, 2820-2830.	1.9	46
71	Bisphosphonate complexation and calcium doping in silica xerogels as a combined strategy for local and controlled release of active platinum antitumor compounds. Dalton Transactions, 2007, , 3131.	1.6	48
72	Synthesis and Characterization of a Platinum(II) Complex Tethered to a Ligand of the Peripheral Benzodiazepine Receptor. Journal of Medicinal Chemistry, 2007, 50, 1019-1027.	2.9	40

#	Article	IF	CITATIONS
73	Biomimetic Hydroxyapatite–Drug Nanocrystals as Potential Bone Substitutes with Antitumor Drug Delivery Properties. Advanced Functional Materials, 2007, 17, 2180-2188.	7.8	304
74	Novel Therapeutic Agents for Bone Resorption. Part 1. Synthesis and Protonation Thermodynamics of Poly(amido-amine)s Containing Bis-phosphonate Residues. Biomacromolecules, 2006, 7, 3417-3427.	2.6	12
75	Sterically hindered complexes of platinum(II) with planar heterocyclic nitrogen donors. A novel complex with 1-methyl-cytosine has a spectrum of activity different from cisplatin and is able of overcoming acquired cisplatin resistance. Journal of Inorganic Biochemistry, 2006, 100, 1849-1857.	1.5	36
76	Platinum Complexes with the Novel Ligand Diethyl [(Methylsulfinyl)-methyl]phosphonate (SMP): Solid-State Characterization of Potassium Trichloro(SMP)platinum(II) which, in Solution, Gives Dichloro(SMP)-platinum(II) and Potassium Chloride. European Journal of Inorganic Chemistry, 2005, 2005, 1710-1715.	1.0	9
77	Platinum-Based Antitumor Drugs Containing Enantiomerically Pure α-Trifluoromethyl Alanine as Ligand. Journal of Medicinal Chemistry, 2005, 48, 7821-7828.	2.9	33
78	Platinum(II) Complexes with Antitumoral/Antiviral Aromatic Heterocycles:Â Effect of Glutathione upon in Vitro Cell Growth Inhibition. Journal of Medicinal Chemistry, 2005, 48, 3364-3371.	2.9	37
79	Role of Metal Ions and Hydrogen Bond Acceptors in the Tautomeric Equilibrium of Nitro-9[(Alkylamino)Amino]-Acridine Drugs. Bioinorganic Chemistry and Applications, 2004, 2, 93-104.	1.8	2
80	Antiviral properties and cytotoxic activity of platinum(II) complexes with 1,10-phenanthrolines and acyclovir or penciclovir. Journal of Inorganic Biochemistry, 2004, 98, 1385-1390.	1.5	30
81	A Molecular Tool for Measuring the Electron-Acceptor Ability of Ligands from Crystallographic Data. European Journal of Inorganic Chemistry, 2004, 2004, 1705-1713.	1.0	31
82	Synthesis and Characterization of Platinum(II) Complexes of Diethyl [(Methylsulfinyl)methyl]phosphonate: Potential Drugs against Bone Tumors. European Journal of Inorganic Chemistry, 2004, 2004, 3445-3452.	1.0	17
83	Influence of steric and electronic factors in the stabilization of five-coordinate ethylene complexes of platinum(II): X-ray crystal structure of [PtCl2(2,9-dimethyl-1,10-phenanthroline-5,6-dione)]. Inorganica Chimica Acta, 2004, 357, 149-158.	1.2	36
84	Mono- and Bis-Guanosine Adducts of Platinum Complexes with Carrier Ligands Having In-Plane Steric Bulk: The Case of 1,10-Phenanthroline and 2,9-Dimethyl-1,10-phenanthroline. European Journal of Inorganic Chemistry, 2003, 2003, 1136-1144.	1.0	15
85	A new case of polymorphism in platinum(II) complexes: [PtBr2(2,9-dimethyl-1,10-phenanthroline)]. Zeitschrift Fur Kristallographie - Crystalline Materials, 2002, 217, .	0.4	8
86	Addition versus substitution in the reaction of diiodo(2,9-dimethyl-1,10-phenanthroline)platinum(II) with aromatic bases. X-ray crystal structures of the substitution products with 2-amino-pyridine and 1-methyl-cytosine. Inorganica Chimica Acta, 2002, 339, 503-512.	1.2	5
87	Structure and dynamics of a platinum(II) aminophosphine complex and its nucleobase adducts. Dalton Transactions RSC, 2001, , 362-372.	2.3	22
88	Synthesis, Characterisation and Antiviral Activity of Platinum(II) Complexes with 1,10-Phenanthrolines and the Antiviral Agents Acyclovir and Penciclovir. European Journal of Inorganic Chemistry, 2001, 2001, 1303-1310.	1.0	23
89	Antitumor Trans Platinum DNA Adducts: NMR and HPLC Study of the Interaction Between a trans-Pt Iminoether Complex and the Deoxy Decamer d(CCTCGCTCTC)·d(GAGAGCGAGG). Metal-Based Drugs, 2000, 7, 23-32.	3.8	19
90	Influence of Carrier Ligand NH Hydrogen Bonding to the O6 and Phosphate Group of Guanine Nucleotides in Platinum Complexes with a Single Guanine Ligand. Inorganic Chemistry, 2000, 39, 634-641.	1.9	31

#	Article	IF	CITATIONS
91	Strong, Rapid Binding of a Platinum Complex to Thymine and Uracil Under Physiological Conditions. Angewandte Chemie International Edition in English, 1997, 36, 1185-1187.	4.4	41
92	Pt(II) Complex Containing the 1 <i>R</i> ,2 <i>R</i> Enantiomer of <i>trans</i> -1,2-diamino-4-cyclohexene Ligand Effectively and Selectively Inhibits the Viability of Aggressive Pancreatic Adenocarcinoma Cells and Alters Their Lipid Metabolism. Inorganic Chemistry Frontiers, 0, , .	3.0	2