Suzanne McGowan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9112899/publications.pdf

Version: 2024-02-01

106 papers 3,022 citations

28 h-index 50 g-index

106 all docs

106 docs citations

106 times ranked 3873 citing authors

#	Article	IF	CITATIONS
1	Acceleration of cyanobacterial dominance in north temperateâ€subarctic lakes during the Anthropocene. Ecology Letters, 2015, 18, 375-384.	6.4	270
2	Looking forward through the past: identification of 50 priority research questions in palaeoecology. Journal of Ecology, 2014, 102, 256-267.	4.0	212
3	Paleolimnological evidence of the effects on lakes of energy and mass transfer from climate and humans. Limnology and Oceanography, 2009, 54, 2330-2348.	3.1	163
4	CONTROLS OF ALGAL ABUNDANCE AND COMMUNITY COMPOSITION DURING ECOSYSTEM STATE CHANGE. Ecology, 2005, 86, 2200-2211.	3.2	107
5	Spatial variability of climate and landâ€use effects on lakes of the northern Great Plains. Limnology and Oceanography, 2008, 53, 728-742.	3.1	94
6	Climate Versus In-Lake Processes as Controls on the Development of Community Structure in a Low-Arctic Lake (South-West Greenland). Ecosystems, 2008, 11, 307-324.	3.4	89
7	Spatial and temporal variability of prairie lake hydrology as revealed using stable isotopes of hydrogen and oxygen. Limnology and Oceanography, 2009, 54, 101-118.	3.1	86
8	Classification of hydrological regimes of northern floodplain basins (Peace–Athabasca Delta,) Tj ETQq0 0 0 rgBT 21, 151-168.	Overlock 2.6	10 Tf 50 46 84
9	Factors driving changes in freshwater mussel (Bivalvia, Unionida) diversity and distribution in Peninsular Malaysia. Science of the Total Environment, 2016, 571, 1069-1078.	8.0	81
10	Development and evaluation of a diatom-conductivity model from lakes in West Greenland. Freshwater Biology, 2002, 47, 995-1014.	2.4	75
11	Catchmentâ€mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet. Global Change Biology, 2014, 20, 1614-1628.	9.5	69
12	Recent ecological change in ancient lakes. Limnology and Oceanography, 2018, 63, 2277-2304.	3.1	68
13	The Arctic in the Twenty-First Century: Changing Biogeochemical Linkages across a Paraglacial Landscape of Greenland. BioScience, 2017, 67, 118-133.	4.9	60
14	A Whole-Lake Experiment to Determine the Effects of Winter Droughts on Shallow Lakes. Ecosystems, 2005, 8, 694-708.	3.4	56
15	Deciphering longâ€term records of natural variability and human impact as recorded in lake sediments: a palaeolimnological puzzle. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1195.	6.5	56
16	Hydroecological responses of the Athabasca Delta, Canada, to changes in river flow and climate during the 20th century. Ecohydrology, 2008, 1, 131-148.	2.4	51
17	The influence of Holocene tree-line advance and retreat on an arctic lake ecosystem: a multi-proxy study from Kharinei Lake, North Eastern European Russia. Journal of Paleolimnology, 2011, 46, 123-137.	1.6	51
18	Lake and catchment response to Holocene environmental change: spatial variability along a climate gradient in southwest Greenland. Journal of Paleolimnology, 2012, 48, 209-222.	1.6	51

#	Article	IF	CITATIONS
19	Autotrophic response to lake age, conductivity and temperature in two West Greenland lakes. Journal of Paleolimnology, 2008, 39, 301-317.	1.6	43
20	Effects of hydrological regulation and anthropogenic pollutants on Dongting Lake in the Yangtze floodplain. Ecohydrology, 2016, 9, 315-325.	2.4	41
21	Holocene palaeoecology of southwest Greenland inferred from macrofossils in sediments of an oligosaline lake. Journal of Paleolimnology, 2010, 43, 787-798.	1.6	40
22	Effects of dam construction and increasing pollutants on the ecohydrological evolution of a shallow freshwater lake in the Yangtze floodplain. Science of the Total Environment, 2018, 621, 219-227.	8.0	40
23	Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape. Environmental Research Letters, 2019, 14, 074027.	5.2	38
24	Interdecadal declines in flood frequency increase primary production in lakes of a northern river delta. Global Change Biology, 2011, 17, 1212-1224.	9.5	35
25	Comparisons of observed and modelled lake δ180 variability. Quaternary Science Reviews, 2016, 131, 329-340.	3.0	34
26	Synergistic impacts of nutrient enrichment and climate change on longâ€term water quality and ecological dynamics in contrasting shallow″ake zones. Limnology and Oceanography, 2021, 66, 3271-3286.	3.1	32
27	Changes and drivers of freshwater mussel diversity and distribution in northern Borneo. Biological Conservation, 2018, 219, 126-137.	4.1	30
28	Characterisation of a major phytoplankton bloom in the River Thames (UK) using flow cytometry and high performance liquid chromatography. Science of the Total Environment, 2018, 624, 366-376.	8.0	30
29	Nutrient limitation of periphyton growth in arctic lakes in south-west Greenland. Polar Biology, 2014, 37, 1331-1342.	1.2	29
30	Seasonal and Regional Controls of Phytoplankton Production along a Climate Gradient in South-West Greenland During Ice-Cover and Ice-Free Conditions. Arctic, Antarctic, and Alpine Research, 2016, 48, 139-159.	1.1	28
31	Regional versus local drivers of water quality in the Windermere catchment, Lake District, United Kingdom: The dominant influence of wastewater pollution over the past 200Âyears. Global Change Biology, 2018, 24, 4009-4022.	9.5	28
32	Longâ€term perspectives on terrestrial and aquatic carbon cycling from palaeolimnology. Wiley Interdisciplinary Reviews: Water, 2016, 3, 211-234.	6.5	27
33	Millennial-scale relationships of diatom species richness and production in two prairie lakes. Limnology and Oceanography, 2004, 49, 1290-1299.	3.1	26
34	Spatial and temporal variability of lake ontogeny in south-western Greenland. Quaternary Science Reviews, 2015, 126, 1-16.	3.0	26
35	Historical atmospheric pollution trends in Southeast Asia inferred from lake sediment records. Environmental Pollution, 2018, 235, 907-917.	7. 5	26
36	Marine resource abundance drove pre-agricultural population increase in Stone Age Scandinavia. Nature Communications, 2020, 11, 2006.	12.8	25

#	Article	IF	Citations
37	Diatom communities along pH and hydrological gradients in three montane mires, central China. Ecological Indicators, 2014, 45, 123-129.	6.3	24
38	The effects of hydrological extremes on former gravel pit lake ecology: management implications. Fundamental and Applied Limnology, 2014, 185, 71-90.	0.7	22
39	Ecological sensitivity of marl lakes to nutrient enrichment: evidence from Hawes Water, UK. Freshwater Biology, 2015, 60, 2226-2247.	2.4	21
40	Effects of glacier meltwater on the algal sedimentary record of an alpine lake in the central US Rocky Mountains throughout the late Holocene. Journal of Paleolimnology, 2015, 53, 385-399.	1.6	21
41	Functional attributes of epilithic diatoms for palaeoenvironmental interpretations in South-West Greenland lakes. Journal of Paleolimnology, 2018, 60, 273-298.	1.6	20
42	Vegetation transitions drive the autotrophy–heterotrophy balance in Arctic lakes. Limnology and Oceanography Letters, 2018, 3, 246-255.	3.9	20
43	Contrasting effects of nutrients and climate on algal communities in two lakes in the Windermere catchment since the late 19th century. Freshwater Biology, 2014, 59, 2605-2620.	2.4	19
44	Diatom evidence of 20th century ecosystem change in Lake Baikal, Siberia. PLoS ONE, 2018, 13, e0208765.	2.5	19
45	Admixture between Ancient Lineages, Selection, and the Formation of Sympatric Stickleback Species-Pairs. Molecular Biology and Evolution, 2019, 36, 2481-2497.	8.9	19
46	Changing nutrient cycling in Lake Baikal, the world's oldest lake. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27211-27217.	7.1	19
47	PALEOLIMNOLOGY Pigment Studies. , 2013, , 326-338.		18
48	Diatom response to heavy metal pollution and nutrient enrichment in an urban lake: evidence from paleolimnology. Annales De Limnologie, 2014, 50, 121-130.	0.6	18
49	Healthy waterways and ecologically sustainable cities in <scp>Beijingâ€Tianjinâ€Hebei</scp> urban agglomeration (northern China): Challenges and future directions. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1500.	6.5	18
50	Environmental change in the Limfjord, Denmark (ca 7500–1500Âcal yrsÂBP): a multiproxy study. Quaternary Science Reviews, 2013, 78, 126-140.	3.0	17
51	A multi-stakeholder strategy to identify conservation priorities in Peninsular Malaysia. Cogent Environmental Science, 2016, 2, 1254078.	1.6	17
52	Diatom-based water-table reconstruction in Sphagnum peatlands of northeastern China. Water Research, 2020, 174, 115648.	11.3	17
53	Persistence of protected, vulnerable macrophyte species in a small, shallow eutrophic lake (eastern) Tj ETQq1 1 Botany, 2013, 106, 1-13.	0.784314 1.6	rgBT /Overloo 16
54	Changes in carbon and nitrogen cycling in a floodplain lake over recent decades linked to littoral expansion, declining riverine influx, and eutrophication. Hydrological Processes, 2017, 31, 3110-3121.	2.6	16

#	Article	IF	CITATIONS
55	Dissolved Inorganic Geogenic Phosphorus Load to a Groundwater-Fed Lake: Implications of Terrestrial Phosphorus Cycling by Groundwater. Water (Switzerland), 2019, 11, 2213.	2.7	16
56	Lake ecosystem on the Qinghai–Tibetan Plateau severely altered by climatic warming and human activity. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 576, 110509.	2.3	16
57	Establishing the impacts of freshwater aquaculture in tropical Asia: the potential role of palaeolimnology. Geo: Geography and Environment, 2015, 2, 148-163.	0.8	15
58	Effects of mussels on nutrient cycling and bioseston in two contrasting tropical freshwater habitats. Hydrobiologia, 2019, 835, 179-191.	2.0	15
59	Potential anthropogenic regime shifts in three freshwater lakes in Tropical East Asia. Freshwater Biology, 2019, 64, 708-722.	2.4	14
60	Cascading effects of generalist fish introduction in oligotrophic lakes. Hydrobiologia, 2013, 711, 99-113.	2.0	13
61	The coming and going of a marl lake: multi-indicator palaeolimnology reveals abrupt ecological change and alternative views of reference conditions. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	13
62	Climate-driven changes in water level: a decadal scale multi-proxy study recording the 8.2-ka event and ecosystem responses in Lake Sarup (Denmark). Journal of Paleolimnology, 2013, 49, 267-285.	1.6	12
63	Disentangling natural and anthropogenic drivers of changes in a shallow lake using palaeolimnology and historical archives. Hydrobiologia, 2016, 767, 301-320.	2.0	12
64	Paleoecological evidence for a multi-trophic regime shift in a perialpine lake (Lake Joux, Switzerland). Anthropocene, 2021, 35, 100301.	3.3	12
65	Direct and indirect effects of Holocene climate variations on catchment and lake processes of a treeline lake, SW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 502, 119-129.	2.3	11
66	Transitions in diatom assemblages and pigments through dry and wet season conditions in the Red River, Hanoi (Vietnam). Plant Ecology and Evolution, 2019, 152, 163-177.	0.7	11
67	Population trends in the Slavonian grebe Podiceps auritus (L.) and Chironomidae (Diptera) at a Scottish loch. Journal of Paleolimnology, 2012, 47, 631-644.	1.6	10
68	Spatial differences in dissolved silicon utilization in Lake Baikal, Siberia: Examining the impact of high diatom biomass events and eutrophication. Limnology and Oceanography, 2018, 63, 1562-1578.	3.1	10
69	Late Quaternary climate change in the north-eastern highlands of Ethiopia: A high resolution 15,600 year diatom and pigment record from Lake Hayk. Quaternary Science Reviews, 2018, 202, 166-181.	3.0	10
70	Mercury loading within the Selenga River basin and Lake Baikal, Siberia. Environmental Pollution, 2020, 259, 113814.	7.5	10
71	Towards the conservation of Borneo's freshwater mussels: rediscovery of the endemic Ctenodesma borneensis and first record of the non-native Sinanodonta lauta. Biodiversity and Conservation, 2020, 29, 2235-2253.	2.6	10
72	Evidence for centennial-scale Mid-Holocene episodes of hypolimnetic anoxia in a high-altitude lake system from central Tian Shan (Kyrgyzstan). Quaternary Science Reviews, 2021, 252, 106748.	3.0	9

#	Article	IF	CITATIONS
73	Local and Regional Drivers of Environmental Changes in Two Subtropical Montane Ponds (Central) Tj ETQq1 1	0.784314	rgBT/Overloci
74	Climatic and environmental change in the western Tibetan Plateau during the Holocene, recorded by lake sediments from Aweng Co. Quaternary Science Reviews, 2021, 259, 106889.	3.0	9
75	The Role of Paleoecology in Whole-Ecosystem Science. , 2009, , 161-208.		9
76	Changes in glacial meltwater alter algal communities in lakes of Scoresby Sund, Renland, East Greenland throughout the Holocene: Abrupt reorganizations began 1000 years before present. Holocene, 2017, 27, 929-940.	1.7	8
77	Regional variability in the atmospheric nitrogen deposition signal and its transfer to the sediment record in Greenland lakes. Limnology and Oceanography, 2018, 63, 2250-2265.	3.1	8
78	Shallow water phytoplankton responses to nitrate and salinity enrichment may be modified by benthic processes. Inland Waters, 2020, 10, 137-151.	2.2	8
79	Impacts of forestry planting on primary production in upland lakes from northâ€west Ireland. Global Change Biology, 2016, 22, 1490-1504.	9.5	7
80	Response of boreal lakes to changing wind strength: Coherent physical changes across two large lakes but varying effects on primary producers over the 20 th century. Limnology and Oceanography, 2019, 64, 2237-2251.	3.1	7
81	Holocene paleolimnology of Greenland and the North Atlantic islands (north of 60°N). , 2004, , 319-347.		7
82	Pigment Studies. , 2007, , 2062-2074.		7
83	Rapidly rising transboundary atmospheric pollution from industrial and urban sources in Southeast Asia and its implications for regional sustainable development. Environmental Research Letters, 2020, 15, 1040a5.	5.2	7
84	Pollenâ€based reconstruction reveals the impact of the onset of agriculture on plant functional trait composition. Ecology Letters, 2022, 25, 1937-1951.	6.4	7
85	Intrinsic and extrinsic controls on lake phytoplankton synchrony as illustrated by algal pigments. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2005, 29, 794-798.	0.1	6
86	Diatoms in a sediment core from a flood pulse wetland in Malaysia record strong responses to human impacts and hydroâ€climate over the past 150Âyears. Geo: Geography and Environment, 2020, 7, e00090.	0.8	6
87	PALEOLIMNOLOGY Pigment Studies. , 2007, , 2062-2074.		5
88	Can fish introductions alter nutrient cycles in previously fishless high-latitude lakes?. Journal of Limnology, 0, , .	1.1	5
89	Modification of littoral algal assemblages by gardening caddisfly larvae. Freshwater Biology, 2017, 62, 507-518.	2.4	5
90	Source and quantity of carbon influence its sequestration in Rostherne Mere (UK) sediment: a novel application of stepped combustion radiocarbon analysis. Journal of Paleolimnology, 2020, 64, 347-363.	1.6	5

#	Article	IF	CITATIONS
91	High rates of biodeposition and N-excretion indicate strong functional effects of mussels (Bivalvia:) Tj ETQq1 1 C	.784314 ı 2.0	rgBŢ /Overlo
92	A Late Holocene record of landscape degradation from Heygsvatn, the Faroe Islands. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 264, 11-24.	2.3	4
93	Using stable isotopes to estimate young water fractions in a heavily regulated, tropical lowland river basin. Hydrological Processes, 2020, 34, 4239-4250.	2.6	4
94	Effects of climate change on a subtropical montane peatland over the last two centuries: Evidence from diatom records. Holocene, 2021, 31, 1112-1123.	1.7	4
95	Holocene lake phosphorus species and primary producers reflect catchment processes in a small, temperate lake. Ecological Monographs, 2021, 91, e01455.	5.4	4
96	Habitat heterogeneity enables spatial and temporal coexistence of native and invasive macrophytes in shallow lake landscapes. River Research and Applications, 2022, 38, 1387-1399.	1.7	4
97	Anthropocene climate warming enhances autochthonous carbon cycling in an upland Arctic lake, Disko Island, West Greenland. Biogeosciences, 2021, 18, 2465-2485.	3.3	3
98	Can δ18O help indicate the causes of recent lake area expansion on the western Tibetan Plateau? A case study from Aweng Co. Journal of Paleolimnology, 2021, 65, 169-180.	1.6	2
99	Getting into hot water: Water quality in tropical lakes in relation to their utilisation. IOP Conference Series: Earth and Environmental Science, 2021, 789, 012021.	0.3	2
100	Tropical Asian megaâ€delta ponds: Important and threatened socioâ€ecological systems. Geo: Geography and Environment, 2021, 8, e00103.	0.8	2
101	Cover Image, Volume 3, Issue 2. Wiley Interdisciplinary Reviews: Water, 2016, 3, i.	6.5	1
102	Diatomâ€inferred microtopography formation in peatlands. Earth Surface Processes and Landforms, 0, ,	2.5	1
103	Muddy messages about American migration. Nature, 2016, 537, 43-44.	27.8	0
104	Brian Moss: the wizard of shallow lakes. Inland Waters, 2020, 10, 153-158.	2,2	0
105	Cover Image, Volume 8, Issue 2. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1515.	6.5	0
106	Reply to "Marine abundance and its prehistoric past in the Baltic― Nature Communications, 2022, 13, .	12.8	0