List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/911271/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. Journal of Applied Polymer Science, 2022, 139, .	2.6	11
2	Mechanical, Dynamic-Mechanical, Thermal and Decomposition Behavior of 3D-Printed PLA Reinforced with CaCO3 Fillers from Natural Resources. Polymers, 2022, 14, 2646.	4.5	7
3	The Impact of Biodegradable Plastics in the Properties of Recycled Polyethylene Terephthalate. Journal of Polymers and the Environment, 2021, 29, 2686-2700.	5.0	24
4	Films Based on Mater-Bi® Compatibilized with Pine Resin Derivatives: Optical, Barrier, and Disintegration Properties. Polymers, 2021, 13, 1506.	4.5	16
5	Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105052.	5.5	21
6	Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods, 2021, 10, 1171.	4.3	25
7	Bilayer films of poly(εâ€caprolactone) electrosprayed with gum rosin microspheres: Processing and characterization. Polymers for Advanced Technologies, 2021, 32, 3770-3781.	3.2	4
8	Gum Rosin as a Size Control Agent of Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Domains to Increase the Toughness of Packaging Formulations Based on Polylactic Acid (PLA). Polymers, 2021, 13, 1913.	4.5	9
9	Deposition of gum rosin microspheres on polypropylene microfibres used in face masks to enhance their hydrophobic behaviour. Environmental Technology and Innovation, 2021, 24, 101812.	6.1	14
10	Improvement of PBAT Processability and Mechanical Performance by Blending with Pine Resin Derivatives for Injection Moulding Rigid Packaging with Enhanced Hydrophobicity. Polymers, 2020, 12, 2891.	4.5	23
11	Silane-Functionalized Sheep Wool Fibers from Dairy Industry Waste for the Development of Plasticized PLA Composites with Maleinized Linseed Oil for Injection-Molded Parts. Polymers, 2020, 12, 2523.	4.5	18
12	A new bio-based fibre-reinforced polymer obtained from sheep wool short fibres and PLA. Green Materials, 2020, 8, 79-91.	2.1	8
13	New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives. Polymers, 2020, 12, 334.	4.5	33
14	Improved Toughness in Lignin/Natural Fiber Composites Plasticized with Epoxidized and Maleinized Linseed Oils. Materials, 2020, 13, 600.	2.9	12
15	A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic. Polymers, 2020, 12, 226.	4.5	29
16	Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity. Journal of Applied Polymer Science, 2020, 137, 49346.	2.6	18
17	Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch. Applied Sciences (Switzerland), 2020, 10, 2561.	2.5	29
18	Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromolecular Materials and Engineering, 2019, 304, 1900379.	3.6	40

#	Article	IF	CITATIONS
19	Effect of Different Compatibilizers on Injection-Molded Green Fiber-Reinforced Polymers Based on Poly(lactic acid)-Maleinized Linseed Oil System and Sheep Wool. Polymers, 2019, 11, 1514.	4.5	21
20	Novel methodology to isolate microplastics from vegetal-rich samples. Marine Pollution Bulletin, 2018, 129, 61-69.	5.0	91
21	Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(ε-caprolactone) (PHB/PCL) thermoplastic blend. European Polymer Journal, 2018, 104, 10-18.	5.4	63
22	Optimizing the yield and physico-chemical properties of pine cone cellulose nanocrystals by different hydrolysis time. Cellulose, 2018, 25, 2925-2938.	4.9	67
23	Interference of Biodegradable Plastics in the Polypropylene Recycling Process. Materials, 2018, 11, 1886.	2.9	56
24	Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Applied Clay Science, 2018, 162, 487-498.	5.2	40
25	Enhancing the mechanical features of clay surfaces by the absorption of nano-SiO2 particles in aqueous media. Case of study on Bronze Age clay objects. Cement and Concrete Composites, 2018, 93, 107-117.	10.7	5
26	Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 2017, 99, 196-204.	5.2	67
27	Characterization of selectively etched halloysite nanotubes by acid treatment. Applied Surface Science, 2017, 422, 616-625.	6.1	77
28	PLA-Based Nanocomposites Reinforced with CNC for Food Packaging Applications: From Synthesis to Biodegradation. , 2017, , 265-300.		6
29	Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 2017, 302, 1600330.	3.6	27
30	On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 2017, 10, 1008.	2.9	272
31	An overview of nanoparticles role in the improvement of barrier properties of bioplastics for food packaging applications. , 2017, , 391-424.		31
32	Nanocellulose-Based Polymeric Blends for Food Packaging Applications. , 2016, , 205-252.		21
33	Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3â€hydroxybutyrate). Polymer International, 2016, 65, 1157-1164.	3.1	50
34	Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polymer Bulletin, 2016, 73, 3333-3350.	3.3	74
35	Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polymer Degradation and Stability, 2016, 132, 145-156.	5.8	81
36	Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products, 2016, 93, 290-301.	5.2	112

#	Article	IF	CITATIONS
37	EFFECT OF D-LIMONENE ON THE STABILIZATION OF POLY (LACTIC ACID). Acta Horticulturae, 2015, , 719-725.	0.2	7
38	Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 2015, 121, 265-275.	10.2	276
39	Microstructure, Mechanical, and Thermogravimetric Characterization of Cellulosic By-Products Obtained from Biomass Seeds. International Journal of Food Properties, 2015, 18, 1211-1222.	3.0	24
40	Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties. European Polymer Journal, 2015, 73, 433-446.	5.4	147
41	Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 2014, 121, 94-101.	5.2	112
42	Multifunctional PLA–PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydrate Polymers, 2014, 107, 16-24.	10.2	250
43	Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 2014, 50, 255-270.	5.4	288
44	Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 2014, 62, 10170-10180.	5.2	160
45	Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 2014, 22, 460-470.	5.0	169
46	Disintegrability under composting conditions of plasticized PLA–PHB blends. Polymer Degradation and Stability, 2014, 108, 307-318.	5.8	220
47	PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 2014, 107, 139-149.	5.8	243
48	Use of atmospheric plasma treatment to improve adhesion properties of sodium ionomer sheets. Surface and Coatings Technology, 2013, 218, 1-6.	4.8	1
49	Mechanical and Thermal Properties of Polyvinyl Chloride Plasticized with Natural Fatty Acid Esters. Polymer-Plastics Technology and Engineering, 2013, 52, 761-767.	1.9	22
50	Development of a novel pyrolysis-gas chromatography/mass spectrometry method for the analysis of poly(lactic acid) thermal degradation products. Journal of Analytical and Applied Pyrolysis, 2013, 101, 150-155.	5.5	63
51	Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 2013, 32, 760-768.	4.8	253
52	Reconstrucción Tridimensional de Superficies en el Cuerpo Humano. Informacion Tecnologica (discontinued), 2013, 24, 31-40.	0.3	1
53	Cambios en la estructura cuticular Ornithodoros erraticus hembra durante el proceso de alimentaciÃ ³ n. Gayana, 2013, 77, 43-52.	0.1	0
54	Modification of surface wettability of sodium ionomer sheets via atmospheric plasma treatment. Polymer Engineering and Science, 2012, 52, 2573-2580.	3.1	3

#	Article	IF	CITATIONS
55	Characterization of the curing process of vinyl plastisols with epoxidized linseed oil as a naturalâ€based plasticizer. Journal of Applied Polymer Science, 2012, 124, 2550-2557.	2.6	25
56	Process behavior of compatible polymer blends. Journal of Applied Polymer Science, 2012, 124, 2485-2493.	2.6	7
57	PIRÓLISIS DE RESIDUOS DE BIOPLÃ&TICOS: PRODUCTOS OBTENIDOS DEL ÃCIDO POLILÃCTICO (PLA). Dyna (Spain), 2012, 87, 395-399.	0.2	9
58	Effect of the epoxidized linseed oil concentration as natural plasticizer in vinyl plastisols. Journal of Materials Science, 2010, 45, 4406-4413.	3.7	63
59	Monitoring the polymerization process of polypyrrole films by thermogravimetric and X-ray analysis. Journal of Thermal Analysis and Calorimetry, 2010, 102, 695-701.	3.6	8
60	Evaluation of the melt stabilization performance of hydroxytyrosol (3,4-dihydroxy-phenylethanol) in polypropylene. Polymer Degradation and Stability, 2010, 95, 1636-1641.	5.8	25
61	Recycling of Expanded Polystyrene from Packaging. Progress in Rubber, Plastics and Recycling Technology, 2010, 26, 83-92.	1.8	29
62	Quantitative Characterization of Multicomponent Polymers by Sample-Controlled Thermal Analysis. Analytical Chemistry, 2010, 82, 8875-8880.	6.5	27
63	Characterisation of elastomer prepared from ground tyre rubber: morphological and granulometric study. Plastics, Rubber and Composites, 2009, 38, 195-200.	2.0	7
64	The effect of the curing time and temperature on final properties of flexible PVC with an epoxidized fatty acid ester as natural-based plasticizer. Journal of Materials Science, 2009, 44, 3702-3711.	3.7	49
65	Analysis weld seam weak in blow molding large parts made of commodity plastics. Engineering Failure Analysis, 2009, 16, 856-862.	4.0	1
66	Failure analysis of automotive battery parts. Engineering Failure Analysis, 2009, 16, 2217-2223.	4.0	7
67	Optimization of the curing conditions of PVC plastisols based on the use of an epoxidized fatty acid ester plasticizer. European Polymer Journal, 2009, 45, 2674-2684.	5.4	105
68	Influence of Sawdust on the Mechanical Properties of Vinyl Plasticized Composites. Journal of Thermoplastic Composite Materials, 2009, 22, 259-272.	4.2	6
69	Mechanical Properties and Fracture Surface Morphology of Dehp and Dinch Based Vinyl Plastisols. Journal of Elastomers and Plastics, 2009, 41, 145-161.	1.5	4
70	Changes in the mechanical and thermal properties of high impact polystyrene (HIPS) in the presence of low polypropylene (PP) contents. Journal of Materials Science, 2008, 43, 3203-3209.	3.7	15
71	The influence of polyethylene in the mechanical recycling of polyethylene terephtalate. Journal of Materials Processing Technology, 2008, 195, 110-116.	6.3	73
72	Study of the Mechanical and Morphological Properties of Plasticized PVC Composites Containing Rice Husk Fillers. Journal of Reinforced Plastics and Composites, 2008, 27, 229-243.	3.1	42

#	Article	IF	CITATIONS
73	Etude des mécanismes de recyclage des caoutchoucs provenant des déchets de pneus. Annales De Chimie: Science Des Materiaux, 2008, 33, 179-188.	0.4	4
74	Substitution of di(2-ethylhexyl) phthalate by di(isononyl) cyclohexane-1,2-dicarboxylate as a plasticizer for industrial vinyl plastisol formulations. Journal of Applied Polymer Science, 2007, 104, 1215-1220.	2.6	56
75	Effects of the injectionâ€molding temperatures and pyrolysis cycles on the butadiene phase of highâ€impact polystyrene. Journal of Applied Polymer Science, 2007, 106, 1903-1908.	2.6	5
76	Compatibility study of recycled poly(vinyl chloride)/styrene-acrylonitrile blends. Journal of Applied Polymer Science, 2007, 106, 20-27.	2.6	6
77	Mechanical behaviour of vinyl plastisols with cellulosic fillers. Analysis of the interface between particles and matrices. International Journal of Adhesion and Adhesives, 2007, 27, 422-428.	2.9	17
78	Determination of the photo-degradation level of high impact polystyrene (HIPS) using pyrolysis–gas chromatography–mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2007, 78, 250-256.	5.5	18
79	Mechanical and morphological characterization of PVC plastisol composites with almond husk fillers. Polymer Composites, 2007, 28, 71-77.	4.6	25
80	Compatibility of recycled PVC/ABS blends. Effect of previous degradation. Polymer Engineering and Science, 2007, 47, 789-796.	3.1	48
81	Characterization of blends of poly(vinyl chloride) waste for building applications. Journal of Materials Science, 2007, 42, 10143-10151.	3.7	9
82	Composites based on sintering rice husk–waste tire rubber mixtures. Materials & Design, 2007, 28, 2234-2238.	5.1	57
83	Kinetic analysis of thermal degradation of recycled polycarbonate/acrylonitrile–butadiene–styrene mixtures from waste electric and electronic equipment. Polymer Degradation and Stability, 2006, 91, 527-534.	5.8	58
84	Electrical properties of EVA filled by zinc powder. Journal of Materials Science, 2006, 41, 6396-6402.	3.7	5
85	Mechanical properties of recycled PVC blends with styrenic polymers. Journal of Applied Polymer Science, 2006, 101, 2464-2471.	2.6	43
86	Predictive Models of Ethylene-Vinyl Acetate (EVA) Copolymers with Powdered Zn Fillers. Macromolecular Symposia, 2005, 221, 209-216.	0.7	0
87	Recycling of ABS and PC from electrical and electronic waste. Effect of miscibility and previous degradation on final performance of industrial blends. European Polymer Journal, 2005, 41, 2150-2160.	5.4	108
88	Thermogravimetric analysis of composites obtained from sintering of rice husk-scrap tire mixtures. Journal of Thermal Analysis and Calorimetry, 2005, 81, 315-320.	3.6	63
89	Influence of crystallinity in the curing mechanism of PVC plastisols. Journal of Applied Polymer Science, 2004, 91, 538-544.	2.6	26
90	Formulation and mechanical characterization of PVC plastisols based on low-toxicity additives. Journal of Applied Polymer Science, 2001, 81, 1881-1890.	2.6	39

JUAN LOPEZ

#	Article	IF	CITATIONS
91	Prussian blue films deposited on graphite+epoxy composite electrodes: electrochemical detection of the second percolation threshold. Journal of Electroanalytical Chemistry, 2000, 484, 33-40.	3.8	18
92	Kinetic analysis of the thermal degradation of PVC plastisols. Journal of Applied Polymer Science, 1999, 73, 1069-1079.	2.6	35
93	Determination of phenol in polymeric materials by supercritical fluid extraction combined with gas chromatography–mass spectrometry. Journal of Chromatography A, 1998, 819, 289-296.	3.7	11
94	Modification of epoxy resins by the addition of PVC plastisols. Journal of Applied Polymer Science, 1998, 67, 1769-1777.	2.6	10
95	Analysis of Potentially Toxic Phthalate Plasticizers Used in Toy Manufacturing. Bulletin of Environmental Contamination and Toxicology, 1998, 60, 68-73.	2.7	55
96	Optimization of variables on the supercritical fluid extraction of phthalate plasticizers. Journal of Supercritical Fluids, 1998, 12, 271-277.	3.2	24
97	Thermal degradation of plastisols. Effect of some additives on the evolution of gaseous products. Journal of Analytical and Applied Pyrolysis, 1997, 40-41, 201-215.	5.5	17
98	Analysis of poly(vinyl chloride) additives by supercritical fluid extraction and gas chromatography. Journal of Chromatography A, 1996, 750, 183-190.	3.7	34
99	Thermal degradation of ethylene (vinyl acetate). Journal of Thermal Analysis, 1996, 47, 247-258.	0.6	68
100	New mathematical model on the thermal degradation of industrial plastisols. Journal of Applied Polymer Science, 1996, 60, 2041-2048.	2.6	35
101	Dynamic mechanical analysis. Journal of Thermal Analysis, 1995, 45, 1167-1174.	0.6	4
102	Electrochemical behaviour and electrical percolation in graphite-epoxy electrodes. Journal of Materials Science, 1994, 29, 4604-4610.	3.7	19
103	Electrochemical characterization of cement/graphite and cement/aluminium materials. Journal of Materials Science Letters, 1994, 13, 609-612.	0.5	5
104	Combined solvent extraction-mass spectrometry determination of free phenol traces in poly(vinyl) Tj ETQq0 0 0	rgBT_/Ove	rlogk 10 Tf 50
105	Apparent activation energies and apparent frequency factor in polarographic waves of paludrine-Zn(II). Electrochimica Acta, 1993, 38, 735-737.	5.2	1
106	Thermal degradation study of poly(vinyl chloride): Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science, 1993, 50, 1565-1573.	2.6	158
107	Aplicación de modelos matemáticos para el estudio de degradación térmica de polÃmeros. Modelling in Science Education and Learning, 0, 6, 119.	0.2	2