
Pedro Henrique R Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9112231/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using Plane Strain Compression Test to Evaluate the Mechanical Behavior of Magnesium Processed by HPT. Metals, 2022, 12, 125.	2.3	11
2	Microstructural evolution and mechanical properties in a Zn–Al–Cu–Mg hypoeutectic alloy processed by multi-directional forging at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140420.	5.6	3
3	Inverse Hall–Petch Behaviour in an AZ91 Alloy and in an AZ91–Al 2 O 3 Composite Consolidated by Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 1900894.	3.5	16
4	Effect of Numbers of Turns of Highâ€Pressure Torsion on the Development of Exceptional Ductility in Pure Magnesium. Advanced Engineering Materials, 2020, 22, 1900565.	3.5	10
5	Interface structures in Al-Nb2O5 nanocomposites processed by high-pressure torsion at room temperature. Materials Characterization, 2020, 162, 110222.	4.4	10
6	Influence of Strain Amplitude on the Microstructural Evolution and Flow Properties of Copper Processed by Multidirectional Forging. Advanced Engineering Materials, 2020, 22, 1901510.	3.5	6
7	Fabrication and characterization of nanostructured immiscible Cu–Ta alloys processed by high-pressure torsion. Journal of Alloys and Compounds, 2020, 832, 155007.	5.5	19
8	Hardness, Microstructure and Strain Distributions in Commercial Purity Aluminum Processed by Multi Directional Forging (MDF). Materials Research, 2020, 23, .	1.3	3
9	Cytotoxicity and Corrosion Behavior of Magnesium and Magnesium Alloys in Hank's Solution after Processing by Highâ€Pressure Torsion. Advanced Engineering Materials, 2019, 21, 1900391.	3.5	31
10	A magnesium-aluminium composite produced by high-pressure torsion. Journal of Alloys and Compounds, 2019, 804, 421-426.	5.5	29
11	Magnesium-Based Bioactive Composites Processed at Room Temperature. Materials, 2019, 12, 2609.	2.9	12
12	Finite Element Modelling of High-Pressure Torsion: An Overview. Materials Transactions, 2019, 60, 1139-1150.	1.2	26
13	Microstructural evolution and mechanical behavior of copper processed by low strain amplitude multi-directional forging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 756, 474-483.	5.6	13
14	Mechanical behavior and microstructures of aluminum in the Multi-Axial Compression (MAC) with and without specimen re-machining. Materials Letters, 2019, 237, 84-87.	2.6	9
15	The Effect of Highâ€Pressure Torsion on Microstructure, Hardness and Corrosion Behavior for Pure Magnesium and Different Magnesium Alloys. Advanced Engineering Materials, 2019, 21, 1801081.	3.5	42
16	The fabrication of graphene-reinforced Al-based nanocomposites using high-pressure torsion. Acta Materialia, 2019, 164, 499-511.	7.9	121
17	Development of a magnesium-alumina composite through cold consolidation of machining chips by high-pressure torsion. Journal of Alloys and Compounds, 2019, 780, 422-427.	5.5	35
18	Developing magnesium-based composites through high-pressure torsion. Letters on Materials, 2019, 9, 541-545	0.7	6

#	ARTICLE	IF	CITATIONS
19	Effect of High-pressure Torsion on Corrosion Behavior of a Solution-treated Al-Mg-Sc Alloy in a Saline Solution. Materials Research, 2019, 22, .	1.3	6
20	Factors influencing superplasticity in the Ti-6Al-4V alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 718, 198-206.	5.6	32
21	Effect of temperature rise on microstructural evolution during high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 714, 167-171.	5.6	74
22	Effect of heat treatments on the microstructures and tensile properties of an ultrafine-grained Al-Zn-Mg alloy processed by ECAP. Journal of Alloys and Compounds, 2018, 749, 567-574.	5.5	28
23	Characterization of precipitates in an Al-Zn-Mg alloy processed by ECAP and subsequent annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 146-156.	5.6	35
24	Exceptionally high strength and good ductility in an ultrafine-grained 316L steel processed by severe plastic deformation and subsequent annealing. Materials Letters, 2018, 214, 240-242.	2.6	31
25	Consolidation of Magnesium and Magnesium Alloy Machine Chips Using High-Pressure Torsion. Materials Science Forum, 2018, 941, 851-856.	0.3	10
26	Annealingâ€Induced Hardening in Ultrafineâ€Grained Ni–Mo Alloys. Advanced Engineering Materials, 2018, 20, 1800184.	3.5	23
27	Grain refinement and superplastic flow in a fully lamellar Ti-6Al-4V alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 398-405.	5.6	33
28	Mechanical properties of an Al-Zn-Mg alloy processed by ECAP and heat treatments. Journal of Alloys and Compounds, 2018, 769, 631-639.	5.5	38
29	Influence of grain size on the flow properties of an Al-Mg-Sc alloy over seven orders of magnitude of strain rate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 685, 367-376.	5.6	64
30	Effect of ECAP processing on microstructure evolution and dynamic compressive behavior at different temperatures in an Al-Zn-Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 617-625.	5.6	35
31	Thermal stability and superplastic behaviour of an Al-Mg-Sc alloy processed by ECAP and HPT at different temperatures. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012013.	0.6	9
32	Thermal stability and mechanical properties of HPT-processed CP-Ti. IOP Conference Series: Materials Science and Engineering, 2017, 194, 012012.	0.6	7
33	An examination of the superplastic characteristics of Al–Mg–Sc alloys after processing. Journal of Materials Research, 2017, 32, 4541-4553.	2.6	17
34	Examining the microhardness evolution and thermal stability of an Al–Mg–Sc alloy processed by high-pressure torsion at a high temperature. Journal of Materials Research and Technology, 2017, 6, 348-354.	5.8	13
35	Microstructural evolution and superplasticity in an Mg–Gd–Y–Zr alloy after processing by different SPD techniques. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 577-585.	5.6	53
36	Examining the Thermal Stability of an Al-Mg-Sc Alloy Processed by High-Pressure Torsion. Materials Research, 2017, 20, 39-45.	1.3	10

#	Article	IF	CITATIONS
37	Microstructure, Texture, and Superplasticity of a Fine-Grained Mg-Gd-Zr Alloy Processed by Equal-Channel Angular Pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6056-6069.	2.2	40
38	Recovery or Non-Recovery in Al-0.1% Mg and Al-1% Mg Alloy during High-Pressure Torsion Processing. Materials Science Forum, 2016, 879, 773-778.	0.3	1
39	Mechanical properties and microstructural evolution of nanocrystalline titanium at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 358-366.	5.6	24
40	Achieving superior grain refinement and mechanical properties in vanadium through high-pressure torsion and subsequent short-term annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 60-69.	5.6	25
41	An examination of the elastic distortions of anvils in high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 631, 201-208.	5.6	26
42	Strain heterogeneities in the rolling direction of steel sheets submitted to the skin pass: A finite element analysis. Journal of Materials Processing Technology, 2015, 216, 234-247.	6.3	20
43	Using finite element modelling to examine the flow process and temperature evolution in HPT under different constraining conditions. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012041.	0.6	15
44	Determination of mechanical anisotropy of magnesium processed by ECAP. Journal of Materials Research and Technology, 2014, 3, 331-337.	5.8	25
45	Modeling the temperature rise in high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 593, 185-188.	5.6	68
46	Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Materialia, 2012, 60, 3190-3198.	7.9	271
47	Analysis of Plastic Deformation and Sample Geometry during the Compression Stage in High-Pressure Torsion. Advanced Materials Research, 0, 922, 592-597.	0.3	3
48	Influence of Initial Heat Treatment on the Microhardness Evolution of an Al-Mg-Sc Alloy Processed by High-Pressure Torsion. Materials Science Forum, 0, 879, 1471-1476.	0.3	4
49	Low Temperature Superplasticity in Ultrafine-Grained AZ31 Alloy. Defect and Diffusion Forum, 0, 385, 59-64.	0.4	6