
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9111378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Moyamoya Disease Susceptibility Gene <i>RNF213</i> Regulates Endothelial Barrier Function. Stroke, 2022, 53, 1263-1275.	2.0	26
2	Preclinical Evaluation of BMP-9-Treated Human Bone-like Substitutes for Alveolar Ridge Preservation following Tooth Extraction. International Journal of Molecular Sciences, 2022, 23, 3302.	4.1	2
3	In Vitro Prevascularization of Self-Assembled Human Bone-Like Tissues and Preclinical Assessment Using a Rat Calvarial Bone Defect Model. Materials, 2021, 14, 2023.	2.9	6
4	Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors. BioMed Research International, 2020, 2020, 1-23.	1.9	28
5	Isolation and Culture of Human Dermal Microvascular Endothelial Cells. Methods in Molecular Biology, 2019, 1993, 79-90.	0.9	11
6	Immune tolerance of tissue-engineered skin produced with allogeneic or xenogeneic fibroblasts and syngeneic keratinocytes grafted on mice. Acta Biomaterialia, 2019, 90, 192-204.	8.3	16
7	Best practices for enhancing surgical research: a perspective from the Canadian Association of Chairs of Surgical Research. Canadian Journal of Surgery, 2019, 62, 488-498.	1.2	5
8	Cell Seeding on UVâ€Câ€Treated 3D Polymeric Templates Allows for Costâ€Effective Production of Smallâ€Caliber Tissueâ€Engineered Blood Vessels. Biotechnology Journal, 2019, 14, e1800306.	3.5	10
9	Biomimetic Tissueâ€Engineered Bone Substitutes for Maxillofacial and Craniofacial Repair: The Potential of Cell Sheet Technologies. Advanced Healthcare Materials, 2018, 7, e1700919.	7.6	60
10	Isolation of Human Skin Lymphatic Endothelial Cells and 3D Reconstruction of the Lymphatic Vasculature In Vitro. Methods in Molecular Biology, 2018, 1846, 279-290.	0.9	8
11	Specialized Living Wound Dressing Based on the Self-Assembly Approach of Tissue Engineering. Journal of Functional Biomaterials, 2018, 9, 53.	4.4	21
12	Tissue-engineered 3D melanoma model with blood and lymphatic capillaries for drug development. Scientific Reports, 2018, 8, 13191.	3.3	58
13	Tissue-engineered 3D human lymphatic microvascular network for in vitro studies of lymphangiogenesis. Nature Protocols, 2017, 12, 1077-1088.	12.0	43
14	A Cellâ€Based Selfâ€Assembly Approach for the Production of Human Osseous Tissues from Adiposeâ€Derived Stromal/Stem Cells. Advanced Healthcare Materials, 2017, 6, 1600889.	7.6	20
15	<i>In Vivo</i> Evaluation and Imaging of a Bilayered Self-Assembled Skin Substitute Using a Decellularized Dermal Matrix Grafted on Mice. Tissue Engineering - Part A, 2017, 23, 313-322.	3.1	18
16	Tissue-Engineered Tubular Heart Valves Combining a Novel Precontraction Phase with the Self-Assembly Method. Annals of Biomedical Engineering, 2017, 45, 427-438.	2.5	7
17	In VivoRemodeling of Fibroblast-Derived Vascular Scaffolds Implanted for 6 Months in Rats. BioMed Research International, 2016, 2016, 1-12.	1.9	5
18	Improved Methods to Produce Tissue-Engineered Skin Substitutes Suitable for the Permanent Closure of Full-Thickness Skin Injuries. BioResearch Open Access, 2016, 5, 320-329.	2.6	43

#	Article	IF	CITATIONS
19	Cell-based approach for 3D reconstruction of lymphatic capillaries inÂvitro reveals distinct functions of HGF and VEGF-C in lymphangiogenesis. Biomaterials, 2016, 78, 129-139.	11.4	75
20	Potential of Newborn and Adult Stem Cells for the Production of Vascular Constructs Using the Living Tissue Sheet Approach. BioMed Research International, 2015, 2015, 1-10.	1.9	9
21	Mechanical properties of endothelialized fibroblast-derived vascular scaffolds stimulated in a bioreactor. Acta Biomaterialia, 2015, 18, 176-185.	8.3	35
22	Human adipose-derived stromal cells for the production of completely autologous self-assembled tissue-engineered vascular substitutes. Acta Biomaterialia, 2015, 24, 209-219.	8.3	30
23	Anticancer properties of chitosan on human melanoma are cell line dependent. International Journal of Biological Macromolecules, 2015, 72, 370-379.	7.5	84
24	Progress in developing a living human tissue-engineered tri-leaflet heart valve assembled from tissue produced by the self-assembly approach. Acta Biomaterialia, 2014, 10, 3563-3570.	8.3	28
25	Comparison of the direct burst pressure and the ring tensile test methods for mechanical characterization of tissue-engineered vascular substitutes. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34, 253-263.	3.1	66
26	Using human umbilical cord cells for tissue engineering: A comparison with skin cells. Differentiation, 2014, 87, 172-181.	1.9	9
27	A New Construction Technique for Tissue-Engineered Heart Valves Using the Self-Assembly Method. Tissue Engineering - Part C: Methods, 2014, 20, 905-915.	2.1	24
28	Minimal contraction for tissue-engineered skin substitutes when matured at the air-liquid interface. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 452-460.	2.7	21
29	Harvesting the Potential of the Human Umbilical Cord: Isolation and Characterisation of Four Cell Types for Tissue Engineering Applications. Cells Tissues Organs, 2013, 197, 37-54.	2.3	23
30	The Pivotal Role of Vascularization in Tissue Engineering. Annual Review of Biomedical Engineering, 2013, 15, 177-200.	12.3	277
31	Development of a tridimensional microvascularized human skin substitute to study melanoma biology. Clinical and Experimental Metastasis, 2013, 30, 83-90.	3.3	40
32	Irradiated Human Dermal Fibroblasts Are as Efficient as Mouse Fibroblasts as a Feeder Layer to Improve Human Epidermal Cell Culture Lifespan. International Journal of Molecular Sciences, 2013, 14, 4684-4704.	4.1	63
33	Prospective Study on the Treatment of Lower-Extremity Chronic Venous and Mixed Ulcers Using Tissue-Engineered Skin Substitute Made by the Self-assembly Approach. Advances in Skin and Wound Care, 2013, 26, 400-409.	1.0	38
34	Human fibroblast-derived ECM as a scaffold for vascular tissue engineering. Biomaterials, 2012, 33, 9205-9213.	11.4	82
35	Spontaneous fibroblastâ€derived pericyte recruitment in a human tissueâ€engineered angiogenesis model in vitro. Journal of Cellular Physiology, 2012, 227, 2130-2137.	4.1	32
36	Mechanical Properties of Tissue-Engineered Vascular Constructs Produced Using Arterial or Venous Cells. Tissue Engineering - Part A, 2011, 17, 2049-2059.	3.1	61

#	Article	IF	CITATIONS
37	A Novel Single-Step Self-Assembly Approach for the Fabrication of Tissue-Engineered Vascular Constructs. Tissue Engineering - Part A, 2010, 16, 1737-1747.	3.1	100
38	Tissue engineering of skin and cornea. Annals of the New York Academy of Sciences, 2010, 1197, 166-177.	3.8	31
39	Normal Human Epithelial Cells Regulate the Size and Morphology of Tissue-Engineered Capillaries. Tissue Engineering - Part A, 2010, 16, 1457-1468.	3.1	45
40	A Preexisting Microvascular Network Benefits <i>In Vivo</i> Revascularization of a Microvascularized Tissue-Engineered Skin Substitute. Tissue Engineering - Part A, 2010, 16, 3199-3206.	3.1	92
41	Tissue-Engineered Vascular Adventitia with <i>Vasa Vasorum</i> Improves Graft Integration and Vascularization Through Inosculation. Tissue Engineering - Part A, 2010, 16, 2617-2626.	3.1	40
42	Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types. Molecular Vision, 2010, 16, 2192-201.	1.1	73
43	Impact of Cell Source on Human Cornea Reconstructed by Tissue Engineering. , 2009, 50, 2645.		70
44	Surface topography induces 3D self-orientation of cells and extracellular matrix resulting in improved tissue function. Integrative Biology (United Kingdom), 2009, 1, 196.	1.3	103
45	Regeneration of Skin and Cornea by Tissue Engineering. Methods in Molecular Biology, 2009, 482, 233-256.	0.9	62
46	Mechanisms by which E-Selectin Regulates Diapedesis of Colon Cancer Cells under Flow Conditions. Cancer Research, 2008, 68, 5167-5176.	0.9	102
47	Optimization of culture conditions for porcine corneal endothelial cells. Molecular Vision, 2007, 13, 524-33.	1.1	17
48	Extracellular matrix deposition by fibroblasts is necessary to promote capillaryâ€ŀike tube formation in vitro. Journal of Cellular Physiology, 2006, 207, 491-498.	4.1	130
49	The LOEX perspective on the role of tissue engineering in regenerative medicine. Bio-Medical Materials and Engineering, 2006, 16, S19-25.	0.6	1
50	Inosculation of Tissue-Engineered Capillaries with the Host's Vasculature in a Reconstructed Skin Transplanted on Mice. American Journal of Transplantation, 2005, 5, 1002-1010.	4.7	335
51	In Vitro Evaluation of the Angiostatic Potential of Drugs Using an Endothelialized Tissue-Engineered Connective Tissue. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 510-516.	2.5	40
52	Tissueâ€engineered skin substitutes: from <i>in vitro</i> constructs to <i>in vivo</i> applications. Biotechnology and Applied Biochemistry, 2004, 39, 263-275.	3.1	128
53	Endothelium properties of a tissue-engineered blood vessel for small-diameter vascular reconstruction. Journal of Vascular Surgery, 2004, 39, 613-620.	1.1	37
54	PRODUCTION OF BIOENGINEERED CANCER TISSUE CONSTRUCTS IN VITRO: EPITHELIUM–MESENCHYME HETEROTYPIC INTERACTIONS. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 434.	1.5	7

#	Article	IF	CITATIONS
55	Simultaneous isolation of keratinocytes and fibroblasts from a human cutaneous biopsy for the production of autologous reconstructed skin. Canadian Journal of Chemical Engineering, 2001, 79, 663-667.	1.7	5
56	Fetal and adult human skin fibroblasts display intrinsic differences in contractile capacity. Journal of Cellular Physiology, 2001, 188, 211-222.	4.1	61
57	A human tissueâ€engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB Journal, 2001, 15, 515-524.	0.5	155
58	Mechanisms of wound reepithelialization: hints from a tissueâ€engineered reconstructed skin to longâ€standing questions. FASEB Journal, 2001, 15, 2377-2389.	0.5	179
59	MULTISTEP PRODUCTION OF BIOENGINEERED SKIN SUBSTITUTES: SEQUENTIAL MODULATION OF CULTURE CONDITIONS. In Vitro Cellular and Developmental Biology - Animal, 2000, 36, 96.	1.5	18
60	Reconstructed Human Cornea Produced in vitro by Tissue Engineering. Pathobiology, 1999, 67, 140-147.	3.8	176
61	Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cellular and Developmental Biology - Animal, 1999, 35, 318-326.	1.5	204
62	Tissue Engineering. Science, 1999, 284, 1621d-1621.	12.6	7
63	A completely biological tissue-engineered human blood vessel. FASEB Journal, 1998, 12, 47-56.	0.5	1,124
64	A completely biological tissueâ€engineered human blood vessel. FASEB Journal, 1998, 12, 47-56.	0.5	845
65	<i>In vitro</i> reconstruction of a human capillaryâ€like network in a tissueâ€engineered skin equivalent. FASEB Journal, 1998, 12, 1331-1340.	0.5	412
66	From newborn to adult: Phenotypic and functional properties of skin equivalent and human skin as a function of donor age. , 1997, 171, 179-189.		46
67	Skin equivalent produced with human collagen. In Vitro Cellular and Developmental Biology - Animal, 1995, 31, 432-439.	1.5	140
68	Functional evaluation of anchored skin equivalent cultured in vitro: percutaneous absorption studies and lipid analysis. Pharmaceutical Research, 1995, 12, 455-458.	3.5	38