Claudia Sala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9111305/publications.pdf

Version: 2024-02-01

201385 223531 3,198 48 27 46 h-index citations g-index papers 53 53 53 4652 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Antibodies, epicenter of SARS-CoV-2 immunology. Cell Death and Differentiation, 2021, 28, 821-824.	5.0	9
2	Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell, 2021, 184, 1821-1835.e16.	13.5	180
3	Multicenter analysis of sputum microbiota in tuberculosis patients. PLoS ONE, 2020, 15, e0240250.	1.1	10
4	FasR Regulates Fatty Acid Biosynthesis and Is Essential for Virulence of Mycobacterium tuberculosis. Frontiers in Microbiology, 2020, 11, 586285.	1.5	1
5	Vaccines as remedy for antimicrobial resistance and emerging infections. Current Opinion in Immunology, 2020, 65, 102-106.	2.4	11
6	Polarly Localized EccE $<$ sub $>$ 1 $<$ /sub $>$ 1s Required for ESX-1 Function and Stabilization of ESX-1 Membrane Proteins in Mycobacterium tuberculosis. Journal of Bacteriology, 2020, 202, .	1.0	7
7	Host-Directed Therapies and Anti-Virulence Compounds to Address Anti-Microbial Resistant Tuberculosis Infection. Applied Sciences (Switzerland), 2020, 10, 2688.	1.3	6
8	Editorial on Special Issue "Tuberculosis Drug Discovery and Development 2019― Applied Sciences (Switzerland), 2020, 10, 6069.	1.3	0
9	Promoter mutagenesis for fineâ€ŧuning expression of essential genes in <i>Mycobacterium tuberculosis</i> . Microbial Biotechnology, 2018, 11, 238-247.	2.0	13
10	EspL is essential for virulence and stabilizes EspE, EspF and EspH levels in Mycobacterium tuberculosis. PLoS Pathogens, 2018, 14, e1007491.	2.1	33
11	Essential Nucleoid Associated Protein mIHF (Rv1388) Controls Virulence and Housekeeping Genes in Mycobacterium tuberculosis. Scientific Reports, 2018, 8, 14214.	1.6	19
12	Rv3852 (H-NS) of Mycobacterium tuberculosis Is Not Involved in Nucleoid Compaction and Virulence Regulation. Journal of Bacteriology, 2017, 199, .	1.0	9
13	<scp>E</scp> sp <scp>C</scp> forms a filamentous structure in the cell envelope of <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> and impacts <scp>ESX</scp> â€l secretion. Molecular Microbiology, 2017, 103, 26-38.	1.2	77
14	The Inosine Monophosphate Dehydrogenase, GuaB2, Is a Vulnerable New Bactericidal Drug Target for Tuberculosis. ACS Infectious Diseases, 2017, 3, 5-17.	1.8	83
15	Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase. PLoS Genetics, 2017, 13, e1006754.	1.5	56
16	Mycobacterium ulcerans Mouse Model Refinement for Pre-Clinical Profiling of Vaccine Candidates. PLoS ONE, 2016, 11, e0167059.	1.1	12
17	Characterization of DprE1-Mediated Benzothiazinone Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6451-6459.	1.4	36
18	Genomic and transcriptomic analysis of the streptomycin-dependent Mycobacterium tuberculosis strain 18b. BMC Genomics, 2016, 17, 190.	1.2	18

#	Article	IF	CITATIONS
19	Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1. Cell Host and Microbe, 2015, 17, 799-810.	5.1	341
20	Lansoprazole is an antituberculous prodrug targeting cytochrome bc1. Nature Communications, 2015, 6, 7659.	5.8	141
21	Bioluminescence for Assessing Drug Potency against Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 4012-4019.	1.4	30
22	GtrA Protein Rv3789 Is Required for Arabinosylation of Arabinogalactan in Mycobacterium tuberculosis. Journal of Bacteriology, 2015, 197, 3686-3697.	1.0	26
23	Whole-Genome Sequencing for Comparative Genomics and De Novo Genome Assembly. Methods in Molecular Biology, 2015, 1285, 1-16.	0.4	15
24	The PhoP-Dependent ncRNA Mcr7 Modulates the TAT Secretion System in Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004183.	2.1	127
25	In VitroandIn VivoActivities of Three Oxazolidinones against Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 3217-3223.	1.4	53
26	<scp>Espl</scp> regulates the <scp>ESX</scp> â€1 secretion system in response to <scp>ATP</scp> levels in <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> . Molecular Microbiology, 2014, 93, 1057-1065.	1.2	27
27	Assessing the essentiality of the decaprenylâ€phosphoâ€ <scp>d</scp> â€arabinofuranose pathway in <scp><i>M</i></scp> <i>ycobacterium tuberculosis</i> ddisconditional mutants. Molecular Microbiology, 2014, 92, 194-211.	1.2	76
28	Assessing essentiality of transketolase in <i>Mycobacterium tuberculosis</i> busing an inducible protein degradation system. FEMS Microbiology Letters, 2014, 358, 30-35.	0.7	8
29	The Phosphatidyl- <i>myo </i> -Inositol Mannosyltransferase PimA Is Essential for Mycobacterium tuberculosis Growth <i>In Vitro </i> and <i>In Vivo </i> Journal of Bacteriology, 2014, 196, 3441-3451.	1.0	37
30	Anticytolytic Screen Identifies Inhibitors of Mycobacterial Virulence Protein Secretion. Cell Host and Microbe, 2014, 16, 538-548.	5.1	83
31	High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum. Microbiology (United Kingdom), 2013, 159, 12-22.	0.7	44
32	High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis. Nucleic Acids Research, 2013, 41, 961-977.	6.5	41
33	Streptomycin-Starved Mycobacterium tuberculosis 18b, a Drug Discovery Tool for Latent Tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 5782-5789.	1.4	88
34	Genome-Wide Definition of the SigF Regulon in Mycobacterium tuberculosis. Journal of Bacteriology, 2012, 194, 2001-2009.	1.0	46
35	Towards a new tuberculosis drug: pyridomycin – nature's isoniazid. EMBO Molecular Medicine, 2012, 4, 1032-1042.	3.3	175
36	Virulence Regulator EspR of Mycobacterium tuberculosis Is a Nucleoid-Associated Protein. PLoS Pathogens, 2012, 8, e1002621.	2.1	115

#	Article	IF	CITATIONS
37	Tuberculosis drugs: new candidates and how to find more. Future Microbiology, 2011, 6, 617-633.	1.0	36
38	Sigma Factor F Does Not Prevent Rifampin Inhibition of RNA Polymerase or Cause Rifampin Tolerance in <i>Mycobacterium tuberculosis</i>). Journal of Bacteriology, 2010, 192, 5472-5479.	1.0	14
39	Simple Model for Testing Drugs against Nonreplicating <i>Mycobacterium tuberculosis</i> Antimicrobial Agents and Chemotherapy, 2010, 54, 4150-4158.	1.4	117
40	Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Research, 2010, 38, e134-e134.	6.5	74
41	Genomeâ€wide regulon and crystal structure of Blal (Rv1846c) from <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2009, 71, 1102-1116.	1.2	61
42	Dissecting Regulatory Networks in Host-Pathogen Interaction Using ChIP-on-chip Technology. Cell Host and Microbe, 2009, 5, 430-437.	5.1	14
43	Benzothiazinones Kill <i>Mycobacterium tuberculosis</i> by Blocking Arabinan Synthesis. Science, 2009, 324, 801-804.	6.0	660
44	The katG mRNA of Mycobacterium tuberculosis and Mycobacterium smegmatis is processed at its 5' end and is stabilized by both a polypurine sequence and translation initiation. BMC Molecular Biology, 2008, 9, 33.	3.0	22
45	Bacteriophage P4 sut1: a mutation suppressing transcription termination. Journal of General Virology, 2007, 88, 1041-1047.	1.3	O
46	DNA replication in phage P4: Characterization of replicon II. Plasmid, 2006, 56, 216-222.	0.4	2
47	Mycobacterium tuberculosis FurA Autoregulates Its Own Expression. Journal of Bacteriology, 2003, 185, 5357-5362.	1.0	61
48	Transcriptional Regulation of furA and katG upon Oxidative Stress in Mycobacterium smegmatis. Journal of Bacteriology, 2001, 183, 6801-6806.	1.0	67