
Philippe Jean Paul Gleize

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9110572/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The role of sodium and sulfate sources on the rheology and hydration of C3A polymorphs. Cement and Concrete Research, 2022, 151, 106639.	4.6	24
2	Effect of bottom ash waste on the rheology and durability of alkali activation pastes. Case Studies in Construction Materials, 2022, 16, e00790.	0.8	7
3	Techno-economic-environmental characteristics of polyurethane composite to thermal insulation for building with flame resistance: corroborative effect recycled of PVC and aluminum oxide. Journal of Material Cycles and Waste Management, 2022, 24, 452-465.	1.6	4
4	Evaluation of the effect of nanosilica and recycled fine aggregate in Portland cement rendering mortars. Revista IBRACON De Estruturas E Materiais, 2022, 15, .	0.3	2
5	Effect of the nanosilica source on the rheology and early-age hydration of calcium sulfoaluminate cement pastes. Construction and Building Materials, 2022, 327, 126942.	3.2	10
6	Evaluation of different organosilanes on multi-walled carbon nanotubes functionalization for application in cementitious composites. Journal of Building Engineering, 2022, 51, 104292.	1.6	12
7	Effect of Multiwalled Carbon Nanotube Functionalization with 3-Aminopropyltriethoxysilane on the Rheology and Early-Age Hydration of Portland Cement Pastes. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	8
8	Análise da dispersão de nanotubos de carbono de paredes múltiplas com diferentes aditivos dispersantes. Revista Materia, 2022, 27, .	0.1	0
9	Effect of partial replacement of the cement by glass waste on cementitious pastes. Construction and Building Materials, 2021, 273, 121704.	3.2	20
10	Rheology, Hydration, and Microstructure of Portland Cement Pastes Produced with Ground AçaÃ- Fibers. Applied Sciences (Switzerland), 2021, 11, 3036.	1.3	50
11	Effect of thermal treatment of SiC nanowhiskers on rheological, hydration, mechanical and microstructure properties of Portland cement pastes. Cement and Concrete Composites, 2021, 117, 103903.	4.6	14
12	Combined Functionalization of Carbon Nanotubes (CNT) Fibers with H2SO4/HNO3 and Ca(OH)2 for Addition in Cementitious Matrix. Fibers, 2021, 9, 14.	1.8	10
13	A cleaner material production by the incorporation of the rockwool waste into portland cement matrices. Journal of Cleaner Production, 2021, 293, 126059.	4.6	11
14	Utilization of ceramic tile demolition waste as supplementary cementitious material: An early-age investigation. Journal of Building Engineering, 2021, 38, 102187.	1.6	33
15	Utilization of Thermally Treated SiC Nanowhiskers and Superplasticizer for Cementitious Composite Production. Materials, 2021, 14, 4062.	1.3	3
16	Influence of Ultrasonication of Functionalized Carbon Nanotubes on the Rheology, Hydration, and Compressive Strength of Portland Cement Pastes. Materials, 2021, 14, 5248.	1.3	22
17	Thermal-mechanical properties of metakaolin-based geopolymer containing silicon carbide microwhiskers. Cement and Concrete Composites, 2021, 123, 104168.	4.6	13
18	Effect of water/cement ratio on micro-nanomechanical properties of the interface between cementitious matrix and steel microfibers in ultra-high performance cementitious composites. Revista IBRACON De Estruturas E Materiais, 2021, 14, .	0.3	0

#	Article	IF	CITATIONS
19	Effect of Carbon Nanotubes (CNTs) aspect ratio on the rheology, thermal conductivity and mechanical performance of Portland cement paste. Revista IBRACON De Estruturas E Materiais, 2021, 14,	0.3	6
20	Workability maintenance of water-reducing admixtures in high-performance pastes produced with different types of Portland cement. Revista Materia, 2021, 26, .	0.1	1
21	Photocatalytic Concrete Blocks Nanomodified with Zinc Oxide for Paving: Mechanical Performance and Microstructural Characteristics. Journal of Testing and Evaluation, 2021, 49, 2860-2884.	0.4	1
22	Functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane for application in cementitious matrix. Construction and Building Materials, 2021, 311, 125358.	3.2	16
23	Use of recycled water from mixer truck wash in concrete: Effect on the hydration, fresh and hardened properties. Construction and Building Materials, 2020, 230, 116981.	3.2	51
24	Self-compacting mortars produced with fine fraction of calcined waste foundry sand (WFS) as alternative filler: Fresh-state, hydration and hardened-state properties. Journal of Cleaner Production, 2020, 252, 119871.	4.6	29
25	Comparison between methods for determining the yield stress of cement pastes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	29
26	Effect of porcelain tile polishing residue on eco-efficient geopolymer: Rheological performance of pastes and mortars. Journal of Building Engineering, 2020, 32, 101699.	1.6	17
27	Effect of carbon nanotubes on compressive, flexural and tensile strengths of Portland cement-based materials: A systematic literature review. Construction and Building Materials, 2020, 264, 120237.	3.2	85
28	Rheological and hydration behaviour of cement pastes containing porcelain polishing residue and different water-reducing admixtures. Construction and Building Materials, 2020, 262, 120850.	3.2	15
29	Use of air-cooled blast furnace slag as supplementary cementitious material for self-compacting concrete production. Construction and Building Materials, 2020, 262, 120102.	3.2	29
30	Effect of partial substitution of superplasticizer by silanes in Portland cement pastes. Journal of Building Engineering, 2020, 29, 101226.	1.6	16
31	Eco-friendly ultra-high performance cement pastes produced with quarry wastes as alternative fillers. Journal of Cleaner Production, 2020, 269, 122308.	4.6	41
32	Effect of carbon nanotubes sonication on mechanical properties of cement pastes. Revista IBRACON De Estruturas E Materiais, 2020, 13, 455-463.	0.3	11
33	Avaliação do desempenho de aditivos comerciais superplastificantes a base de policarboxilato nas propriedades mecânicas e microestruturais de pastas de cimento Portland. Revista Materia, 2020, 25, .	0.1	1
34	Incorporação de lodo calcinado de estação de tratamento de água como material cimentÃcio suplementar. Ambiente ConstruÃdo, 2020, 20, 243-260.	0.2	5
35	Structure and nanomechanical characterization of synthetic calcium-silicate-hydrate with poly-methacrylic acid. Revista IBRACON De Estruturas E Materiais, 2020, 13, .	0.3	2
36	Effect of pristine and functionalized carbon nanotubes on microstructural, rheological, and mechanical behaviors of metakaolin-based geopolymer. Cement and Concrete Composites, 2019, 104, 103332.	4.6	49

#	Article	IF	CITATIONS
37	Effect of silicon carbide nanowhiskers on hydration and mechanical properties of a Portland cement paste. Construction and Building Materials, 2018, 169, 388-395.	3.2	30
38	Use of porcelain polishing residue as a supplementary cimentitious material in self-compacting concrete. Construction and Building Materials, 2018, 193, 623-630.	3.2	45
39	Effect of porcelain tile polishing residue on geopolymer cement. Journal of Cleaner Production, 2018, 191, 297-303.	4.6	27
40	Structure and micro-nanomechanical characterization of synthetic calcium–silicate–hydrate with Poly(Vinyl Alcohol). Cement and Concrete Composites, 2014, 48, 1-8.	4.6	43
41	Exploring the potential of siloxane surface modified nano-SiO2 to improve the Portland cement pastes hydration properties. Construction and Building Materials, 2014, 54, 99-105.	3.2	71
42	Effect of the Ca/Si Molar Ratio on the Micro/nanomechanical Properties of Synthetic C-S-H Measured by Nanoindentation. Journal of Physical Chemistry C, 2012, 116, 17219-17227.	1.5	139
43	Development and evaluation of the efficiency of photocatalytic pavement blocks in the laboratory and after one year in the field. Construction and Building Materials, 2012, 37, 310-319.	3.2	47
44	Mechanical properties of recycled PET fibers in concrete. Materials Research, 2012, 15, 679-686.	0.6	123
45	Comparative analysis of the properties of composite mortar with addition of rubber powder from worn tires. Ambiente ConstruÃdo, 2012, 12, 257-267.	0.2	3
46	Effect of EVA on the fresh properties of cement paste. Cement and Concrete Composites, 2012, 34, 255-260.	4.6	78
47	SÃntese de complexos de silicato de cálcio hidratado/polÃmeros. Revista IBRACON De Estruturas E Materiais, 2011, 4, 702-708.	0.3	0
48	Effect of poly(diallyldimethylammonium chloride) on nanostructure and mechanical properties of calcium silicate hydrate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7045-7049.	2.6	23
49	Wall Coating Using the <i>Escariola</i> Technique. Studies in Conservation, 2010, 55, 293-300.	0.6	0
50	Characterization of historical mortars from Santa Catarina (Brazil). Cement and Concrete Composites, 2009, 31, 342-346.	4.6	48
51	Effect of HMEC on the consolidation of cement pastes: Isothermal calorimetry versus oscillatory rheometry. Cement and Concrete Research, 2009, 39, 440-445.	4.6	75
52	Chemical interaction between EVA and Portland cement hydration at early-age. Construction and Building Materials, 2009, 23, 3332-3336.	3.2	68
53	Effects of metakaolin on autogenous shrinkage of cement pastes. Cement and Concrete Composites, 2007, 29, 80-87.	4.6	95
54	Degradation of recycled PET fibers in Portland cement-based materials. Cement and Concrete Research, 2005, 35, 1741-1746.	4.6	157

#	Article	IF	CITATIONS
55	Microstructural investigation of a silica fume–cement–lime mortar. Cement and Concrete Composites, 2003, 25, 171-175.	4.6	94
56	Evidences of chemical interaction between EVA and hydrating Portland cement. Cement and Concrete Research, 2002, 32, 1383-1390.	4.6	205
57	Ancient rendering mortars from a Brazilian palace. Cement and Concrete Research, 2000, 30, 1609-1614.	4.6	12
58	Growth of tubular boron nitride filaments. Journal of Materials Science, 1994, 29, 1575-1580.	1.7	81
59	Characterization of tubular boron nitride filaments. Journal of Materials Science Letters, 1994, 13, 1413-1415.	0.5	25