Johannes van Dommelen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9110102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical properties of brain tissue by indentation: Interregional variation. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 158-166.	3.1	253
2	Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers. Journal of the Mechanics and Physics of Solids, 2003, 51, 519-541.	4.8	220
3	Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads. Biomechanics and Modeling in Mechanobiology, 2013, 12, 137-150.	2.8	115
4	Micromechanics of diffuse axonal injury: influence of axonal orientation and anisotropy. Biomechanics and Modeling in Mechanobiology, 2011, 10, 413-422.	2.8	89
5	Micromechanical modeling of intraspherulitic deformation of semicrystalline polymers. Polymer, 2003, 44, 6089-6101.	3.8	66
6	Micromechanical modeling of the elastic properties of semicrystalline polymers: A threeâ€phase approach. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2173-2184.	2.1	46
7	Micromechanical modeling of the deformation kinetics of semicrystalline polymers. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1297-1310.	2.1	38
8	Micromechanical modeling of particle-toughening of polymers by locally induced anisotropy. Mechanics of Materials, 2003, 35, 845-863.	3.2	33
9	An enriched cohesive zone model for delamination in brittle interfaces. International Journal for Numerical Methods in Engineering, 2009, 80, 609-630.	2.8	33
10	A tissue-level anisotropic criterion for brain injury based on microstructural axonal deformation. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 5, 41-52.	3.1	32
11	Multiphysical modeling of the photopolymerization process for additive manufacturing of ceramics. European Journal of Mechanics, A/Solids, 2018, 71, 210-223.	3.7	31
12	Micromechanical modeling of the tensile behavior of oriented polyethylene. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 2983-2994.	2.1	29
13	Xâ€ray computed tomographyâ€based modeling of polymeric foams: The effect of finite element model size on the large strain response. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1526-1534.	2.1	29
14	Anisotropic yielding of injection molded polyethylene: Experiments and modeling. Polymer, 2013, 54, 5899-5908.	3.8	26
15	Experimental characterization and modeling of the mechanical behavior of brittle 3D printed food. Journal of Food Engineering, 2020, 278, 109941.	5.2	24
16	Using 3D-printed tungsten to optimize liquid metal divertor targets for flow and thermal stresses. Nuclear Fusion, 2019, 59, 054001.	3.5	22
17	Nonlinear Viscoelastic Behavior of Human Knee Ligaments Subjected to Complex Loading Histories. Annals of Biomedical Engineering, 2006, 34, 1008-1018.	2.5	21
18	A three-dimensional self-adaptive cohesive zone model for interfacial delamination. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 3540-3553.	6.6	20

JOHANNES VAN DOMMELEN

#	Article	IF	CITATIONS
19	Brittle-ductile transition temperature of recrystallized tungsten following exposure to fusion relevant cyclic high heat load. Journal of Nuclear Materials, 2020, 541, 152416.	2.7	19
20	Pedestrian Injuries: Viscoelastic Properties of Human Knee Ligaments at High Loading Rates. Traffic Injury Prevention, 2005, 6, 278-287.	1.4	17
21	Anisotropic mechanical properties of Selective Laser Sintered starch-based food. Journal of Food Engineering, 2022, 318, 110890.	5.2	15
22	A numerical investigation of the potential of rubber and mineral particles for toughening of semicrystalline polymers. Computational Materials Science, 2003, 27, 480-492.	3.0	14
23	Recrystallization behaviour of high-flux hydrogen plasma exposed tungsten. Journal of Nuclear Materials, 2021, 545, 152748.	2.7	14
24	Recrystallization-mediated crack initiation in tungsten under simultaneous high-flux hydrogen plasma loads and high-cycle transient heating. Nuclear Fusion, 2021, 61, 046018.	3.5	14
25	Experimental investigation of the microstructural changes of tungsten monoblocks exposed to pulsed high heat loads. Nuclear Materials and Energy, 2020, 22, 100716.	1.3	13
26	Fracture behavior of tungsten-based composites exposed to steady-state/transient hydrogen plasma. Nuclear Fusion, 2020, 60, 046029.	3.5	13
27	Three mechanisms of hydrogen-induced dislocation pinning in tungsten. Nuclear Fusion, 2020, 60, 086015.	3.5	12
28	Micromechanical modelling of reversible and irreversible thermo-mechanical deformation of oriented polyethylene terephthalate. Computational Materials Science, 2015, 98, 189-200.	3.0	11
29	Influence of particle shape in the additive manufacturing process for ceramics. Computers and Mathematics With Applications, 2019, 78, 2360-2376.	2.7	11
30	Computational homogenization of sound propagation in a deformable porous material including microscopic viscous-thermal effects. Journal of Sound and Vibration, 2016, 365, 119-133.	3.9	10
31	Spatially dependent kinetics of helium in tungsten under fusion conditions. Journal of Nuclear Materials, 2020, 535, 152104.	2.7	10
32	Intrinsic mechanical properties of food in relation to texture parameters. Mechanics of Time-Dependent Materials, 2022, 26, 323-346.	4.4	8
33	Controlled irradiation hardening of tungsten by cyclic recrystallization. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 065001.	2.0	7
34	Computational homogenisation of acoustic metafoams. European Journal of Mechanics, A/Solids, 2019, 77, 103805.	3.7	7
35	Simulation of interlaminar damage in mixed-mode bending tests using large deformation self-adaptive cohesive zones. Engineering Fracture Mechanics, 2013, 109, 387-402.	4.3	6
36	Long-term microstructural evolution of tungsten under heat and neutron loads. Computational Materials Science, 2019, 170, 109146.	3.0	6

#	Article	IF	CITATIONS
37	Gradient crystal plasticity modelling of anelastic effects in particle strengthened metallic thin films. Meccanica, 2014, 49, 2657-2685.	2.0	5
38	Computational analysis of the evolution of the brittle-to-ductile transition of tungsten under fusion conditions. Modelling and Simulation in Materials Science and Engineering, 2021, 29, 015005.	2.0	5
39	Multiscale modeling of particle-modified polyethylene. Journal of Materials Science, 2003, 38, 4393-4405.	3.7	4
40	Microstructural evolution and regeneration in neutron-irradiated tungsten monoblocks. International Journal of Engineering Science, 2019, 142, 36-52.	5.0	4
41	Modelling the brittle-to-ductile transition of high-purity tungsten under neutron irradiation. Journal of Nuclear Materials, 2021, 554, 153068.	2.7	4
42	Multi-scale fracture probability analysis of tungsten monoblocks under fusion conditions. Nuclear Materials and Energy, 2021, 28, 101032.	1.3	2
43	A numerical model for the recrystallization kinetics of tungsten monoblocks under cyclic heat loads. Fusion Engineering and Design, 2021, 173, 112827.	1.9	2
44	Improved associated flow rule for anisotropic viscoplasticity in thermoplastic polymer systems. Mechanics of Materials, 2021, 163, 104087.	3.2	2
45	Crystal plasticity based modeling of time and scale dependent behavior of thin films. GAMM Mitteilungen, 2013, 36, 161-185.	5.5	0
46	Mechanics of amorphous solids—identification and constitutive modelling. Mechanics of Time-Dependent Materials, 2018, 22, 143-144.	4.4	0