Randall J Brezski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9109838/publications.pdf

Version: 2024-02-01

31	2,061	21	29
papers	citations	h-index	g-index
32	32	32	3510 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Domain-Specific Antibodies Reveal Differences in the Membrane Topologies of Apolipoprotein L1 in Serum and Podocytes. Journal of the American Society of Nephrology: JASN, 2020, 31, 2065-2082.	6.1	15
2	lgG Fc engineering to modulate antibody effector functions. Protein and Cell, 2018, 9, 63-73.	11.0	242
3	Molecular characterization of human anti-hinge antibodies derived from single-cell cloning of normal human B cells. Journal of Biological Chemistry, 2018, 293, 906-919.	3.4	7
4	Effector-attenuating Substitutions That Maintain Antibody Stability and Reduce Toxicity in Mice. Journal of Biological Chemistry, 2017, 292, 3900-3908.	3.4	206
5	A Novel Bispecific Antibody Targeting EGFR and cMet Is Effective against EGFR Inhibitor–Resistant Lung Tumors. Cancer Research, 2016, 76, 3942-3953.	0.9	165
6	Immunoglobulin isotype knowledge and application to Fc engineering. Current Opinion in Immunology, 2016, 40, 62-69.	5.5	61
7	A peptide immunization approach to counteract a Staphylococcus aureus protease defense against host immunity. Immunology Letters, 2016, 172, 29-39.	2.5	10
8	Novel Generation of Antibody-Based Therapeutics. , 2015, , 125-146.		0
9	Proteolytic Cleavage and Loss of Function of Biologic Agents That Neutralize Tumor Necrosis Factor in the Mucosa of Patients With Inflammatory Bowel Disease. Gastroenterology, 2015, 149, 1564-1574.e3.	1.3	105
10	A Novel Therapeutic Strategy to Rescue the Immune Effector Function of Proteolytically Inactivated Cancer Therapeutic Antibodies. Molecular Cancer Therapeutics, 2015, 14, 681-691.	4.1	18
11	An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions. MAbs, 2015, 7, 494-504.	5.2	32
12	Trastuzumab Triggers Phagocytic Killing of High HER2 Cancer Cells In Vitro and In Vivo by Interaction with FcÎ ³ Receptors on Macrophages. Journal of Immunology, 2015, 194, 4379-4386.	0.8	150
13	Dysfunctional Antibodies in the Tumor Microenvironment Associate with Impaired Anticancer Immunity. Clinical Cancer Research, 2015, 21, 5380-5390.	7.0	19
14	A monoclonal antibody against hinge-cleaved IgG restores effector function to proteolytically-inactivated IgGs in vitro and in vivo. MAbs, 2014, 6, 1265-1273.	5.2	23
15	Structure and specificity of an antibody targeting a proteolytically cleaved IgG hinge. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1656-1667.	2.6	15
16	An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations. Methods, 2014, 65, 114-126.	3.8	127
17	Engineered Protease-resistant Antibodies with Selectable Cell-killing Functions. Journal of Biological Chemistry, 2013, 288, 30843-30854.	3.4	33
18	Tumor-Associated Macrophages Promote Invasion while Retaining Fc-Dependent Anti-Tumor Function. Journal of Immunology, 2012, 189, 5457-5466.	0.8	97

#	Article	IF	CITATIONS
19	A single proteolytic cleavage within the lower hinge of trastuzumab reduces immune effector function and in vivo efficacy. Breast Cancer Research, 2012, 14, R116.	5.0	53
20	Application of Antibody Engineering in the Development of Next Generation Antibody-Based Therapeutics. , 2012 , , 65 - 93 .		2
21	Avidity confers $Fc\hat{l}^3R$ binding and immune effector function to aglycosylated immunoglobulin G1. Journal of Molecular Recognition, 2012, 25, 147-154.	2.1	48
22	The Origins, Specificity, and Potential Biological Relevance of Human Anti-IgG Hinge Autoantibodies. Scientific World Journal, The, 2011, 11, 1153-1167.	2.1	20
23	The in vitro resistance of $\lg G2$ to proteolytic attack concurs with a comparative paucity of autoantibodies against peptide analogs of the $\lg G2$ hinge. MAbs, 2011, 3, 558-567.	5. 2	34
24	Cleavage of IgGs by proteases associated with invasive diseases. MAbs, 2010, 2, 212-220.	5. 2	130
25	Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17864-17869.	7.1	83
26	Tonic B cell antigen receptor signals supply an NF-lºB substrate for prosurvival BLyS signaling. Nature Immunology, 2008, 9, 1379-1387.	14.5	190
27	B-Cell Receptor. Advances in Experimental Medicine and Biology, 2008, 640, 12-21.	1.6	38
28	Human Anti-IgG1 Hinge Autoantibodies Reconstitute the Effector Functions of Proteolytically Inactivated IgGs. Journal of Immunology, 2008, 181, 3183-3192.	0.8	40
29	B Cell Antigen Receptor-Induced Rac1 Activation and Rac1-Dependent Spreading Are Impaired in Transitional Immature B Cells Due to Levels of Membrane Cholesterol. Journal of Immunology, 2007, 179, 4464-4472.	0.8	25
30	BCR-linked Factors in Developmental Fate Decisions. , 2007, 596, 47-55.		1
31	Membrane Cholesterol Content Accounts for Developmental Differences inSurface B Cell Receptor Compartmentalization and Signaling. Journal of Biological Chemistry, 2005, 280, 25621-25628.	3.4	59