Paul T Hamilton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9109812/publications.pdf

Version: 2024-02-01

29 1,888 15
papers citations h-index

33 33 1636
all docs docs citations times ranked citing authors

25

g-index

#	Article	IF	Citations
1	Remodeling hydrogen bond interactions results in relaxed specificity of Caspase-3. Bioscience Reports, 2021, 41, .	1.1	5
2	Caspases from scleractinian coral show unique regulatory features. Journal of Biological Chemistry, 2020, 295, 14578-14591.	1.6	10
3	Resurrection of ancestral effector caspases identifies novel networks for evolution of substrate specificity. Biochemical Journal, 2019, 476, 3475-3492.	1.7	22
4	An Internship May Not Be Enough: Enhancing Bioscience Industry Job Readiness through Practicum Experiences. Journal of Microbiology and Biology Education, 2017, 18, .	0.5	4
5	Identification of an Alternative to Proteus vulgaris as a Laboratory Standard for Hydrogen Sulfide Production. Journal of Microbiology and Biology Education, 2017, 18, .	0.5	2
6	Phage display and structural studies reveal plasticity in substrate specificity of caspaseâ€3a from zebrafish. Protein Science, 2016, 25, 2076-2088.	3.1	16
7	Characterization of a thermophilic bacteriophage of Geobacillus kaustophilus. Archives of Virology, 2014, 159, 2771-2775.	0.9	15
8	Cooperative Learning through Team-Based Projects in the Biotechnology Industry. Journal of Microbiology and Biology Education, 2013, 14, 221-229.	0.5	3
9	Improved Bone Morphogenetic Protein-2 Retention in an Injectable Collagen Matrix Using Bifunctional Peptides. PLoS ONE, 2013, 8, e70715.	1.1	26
10	Preparing Science-Trained Professionals for the Biotechnology Industry: A Ten-Year Perspective on a Professional Science Master's Program. Journal of Microbiology and Biology Education, 2012, 13, 39-44.	0.5	3
11	Directed Assembly of PEGylated-Peptide Coatings for Infection-Resistant Titanium Metal. Journal of the American Chemical Society, 2009, 131, 10992-10997.	6.6	117
12	Endothelialization of Titanium Surfaces. Advanced Materials, 2007, 19, 2492-2498.	11.1	44
13	Intracellular Expression of Peptide Fusions for Demonstration of Protein Essentiality in Bacteria. Antimicrobial Agents and Chemotherapy, 2003, 47, 2875-2881.	1.4	34
14	Surrogate Ligand-Based Assay Systems for Discovery of Antibacterial Agents for Genomic Targets. , 2003, , 173-185.		0
15	Phage display for target-based antibacterial drug discovery. Drug Discovery Today, 2001, 6, 721-727.	3.2	52
16	Identification of Enzyme Inhibitors from Phage-Displayed Combinatorial Peptide Libraries. Combinatorial Chemistry and High Throughput Screening, 2001, 4, 535-543.	0.6	23
17	Detection of small-molecule enzyme inhibitors with peptides isolated from phage-displayed combinatorial peptide libraries. Chemistry and Biology, 2000, 7, 17-25.	6.2	93
18	Estrogen receptor (ER) modulators each induce distinct conformational changes in ER Â and ER Â. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3999-4004.	3.3	397

#	Article	IF	CITATIONS
19	Peptide Antagonists of the Human Estrogen Receptor. Science, 1999, 285, 744-746.	6.0	352
20	Dissection of the LXXLL Nuclear Receptor-Coactivator Interaction Motif Using Combinatorial Peptide Libraries: Discovery of Peptide Antagonists of Estrogen Receptors \hat{l}_{\pm} and \hat{l}_{\pm} . Molecular and Cellular Biology, 1999, 19, 8226-8239.	1.1	349
21	Applying Genetic Engineering to the Structural Analysis of Proteins. Pharmaceutical Biotechnology, 1995, 7, 329-350.	0.3	1
22	Expression of a single-chain antibody as a maltose binding protein fusion. Protein Engineering, Design and Selection, $1993, , .$	1.0	0
23	Nucleotide sequence of the major outer membrane protein gene fromChlamydia trachomatisserovar H. Nucleic Acids Research, 1989, 17, 8366-8366.	6.5	36
24	A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain delta H encodes a polyferredoxin Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 3031-3035.	3.3	127
25	Divergence of Methanogens, Conservation of the His I Gene Sequence in all Three Biological Kingdoms and the Status of Methanobacterium Thermoautotrophicum. , 1987, , 255-260.		3
26	Structure of methanogen genes. Systematic and Applied Microbiology, 1986, 7, 5-12.	1.2	29
27	Structure of genes and an insertion element in the methane producing archaebacterium Methanobrevibacter smithii. Molecular Genetics and Genomics, 1985, 200, 47-59.	2.4	69
28	Sequence divergence of an archaebacterial gene cloned from a mesophilic and a thermophilic methanogen. Journal of Molecular Evolution, 1985, 22, 351-360.	0.8	39
29	Beginning Genetics with Methanogens. , 1982, 19, 233-244.		17