Hui Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9109347/publications.pdf

Version: 2024-02-01

		394286	360920
38	1,389	19	35
papers	citations	h-index	g-index
20	20	20	2602
38	38	38	2683
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues. Renewable and Sustainable Energy Reviews, 2008, 12, 1402-1418.	8.2	236
2	Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiology, 2018, 38, 658-663.	1.4	126
3	Hydraulic traits are coordinated with maximum plant height at the global scale. Science Advances, 2019, 5, eaav1332.	4.7	113
4	Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae. Scientific Reports, 2015, 5, 12246.	1.6	60
5	Are leaves more vulnerable to cavitation than branches?. Functional Ecology, 2016, 30, 1740-1744.	1.7	60
6	Differential Responses of Stomata and Photosynthesis to Elevated Temperature in Two Co-occurring Subtropical Forest Tree Species. Frontiers in Plant Science, 2018, 9, 467.	1.7	58
7	Using functional trait diversity patterns to disentangle the scaleâ€dependent ecological processes in a subtropical forest. Functional Ecology, 2018, 32, 1379-1389.	1.7	53
8	Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability. Journal of Experimental Botany, 2015, 66, 761-773.	2.4	51
9	Phylogenetic niche conservatism in C4 grasses. Oecologia, 2012, 170, 835-845.	0.9	49
10	Climatic-niche evolution follows similar rules in plants and animals. Nature Ecology and Evolution, 2020, 4, 753-763.	3.4	49
11	Weak tradeoff between xylem hydraulic efficiency and safety: climatic seasonality matters. New Phytologist, 2021, 229, 1440-1452.	3.5	49
12	Biodiversity conservation in a fast-growing metropolitan area in China: a case study of plant diversity in Beijing. Biodiversity and Conservation, 2007, 16, 4025-4038.	1.2	45
13	Adsorption of (â^')-epigallocatechin-3-gallate (EGCG) onto oat β-glucan. Food Chemistry, 2012, 132, 1936-1943.	4.2	45
14	Wood density predicts mortality threshold for diverse trees. New Phytologist, 2021, 229, 3053-3057.	3.5	42
15	Stereotypic behavior and fecal cortisol level in captive giant pandas in relation to environmental enrichment. Zoo Biology, 2006, 25, 445-459.	0.5	41
16	Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements. New Phytologist, 2019, 223, 607-618.	3.5	37
17	Invasion Possibility and Potential Effects of <i>Rhus typhina</i> on Beijing Municipality. Journal of Integrative Plant Biology, 2008, 50, 522-530.	4.1	36
18	Growingâ€season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Global Change Biology, 2020, 26, 1833-1841.	4.2	36

#	Article	IF	CITATIONS
19	Precipitation has dominant influences on the variation of plant hydraulics of the native Castanopsis fargesii (Fagaceae) in subtropical China. Agricultural and Forest Meteorology, 2019, 271, 83-91.	1.9	24
20	Life history is a key factor explaining functional trait diversity among subtropical grasses, and its influence differs between C3 and C4 species. Journal of Experimental Botany, 2019, 70, 1567-1580.	2.4	22
21	Tropical tall forests are more sensitive and vulnerable to drought than short forests. Global Change Biology, 2022, 28, 1583-1595.	4.2	20
22	Plant extinction excels plant speciation in the Anthropocene. BMC Plant Biology, 2020, 20, 430.	1.6	18
23	Shifts in functional trait–species abundance relationships over secondary subalpine meadow succession in the Qinghai–Tibetan Plateau. Oecologia, 2018, 188, 547-557.	0.9	17
24	Water transport from stem to stomata: the coordination of hydraulic and gas exchange traits across 33 subtropical woody species. Tree Physiology, 2019, 39, 1665-1674.	1.4	15
25	Linking vein properties to leaf biomechanics across 58 woody species from a subtropical forest. Plant Biology, 2020, 22, 212-220.	1.8	14
26	Can evolutionary history predict plant plastic responses to climate change?. New Phytologist, 2022, 235, 1260-1271.	3.5	14
27	Different water relations between flowering and leaf periods: a case study in flower-before-leaf-emergence Magnolia species. Functional Plant Biology, 2017, 44, 1098.	1.1	12
28	Greater hydraulic safety contributes to higher growth resilience to drought across seven pine species in a semi-arid environment. Tree Physiology, 2022, 42, 727-739.	1.4	9
29	Habitat filtering and exclusion of weak competitors jointly explain fern species assemblage along a light and water gradient. Scientific Reports, 2017, 7, 298.	1.6	8
30	Uncovering the spatioâ€temporal drivers of species trait variances: a case study of Magnoliaceae in China. Journal of Biogeography, 2016, 43, 1179-1191.	1.4	6
31	Ecophysiological responses of two closely related Magnoliaceae genera to seasonal changes in subtropical China. Journal of Plant Ecology, 2018, 11, 434-444.	1.2	6
32	Phylogeny and ecological processes influence grass coexistence at different spatial scales within the steppe biome. Oecologia, 2019, 191, 25-38.	0.9	6
33	Early direct competition does not determine the community structure in a desert riparian forest. Scientific Reports, 2018, 8, 4531.	1.6	5
34	C4 trees have a broader niche than their close C3 relatives. Journal of Experimental Botany, 2022, 73, 3189-3204.	2.4	4
35	Intraspecific variability of ecophysiological traits of four Magnoliaceae species growing in two climatic regions in China. Plant Ecology, 2017, 218, 407-415.	0.7	2
36	Pennisetum Hydridum's Potential for Controlling Invasive Chromolaena Odorata. Sustainability, 2019, 11, 5990.	1.6	1

#	Article	IF	CITATIONS
37	Diversity of Reproductive Phenology Among Subtropical Grasses Is Constrained by Evolution and Climatic Niche. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	0
38	ä¹ç§ç»´ç®¡æ ছ ‰ ©æ°´åŠ›æ€§çŠ¶çš"æ¼"化趋势. Chinese Journal of Plant Ecology, 2018, 42, 220-228.	0.3	0