Michael A Dyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9109338/publications.pdf Version: 2024-02-01

		31976	30087
135	11,548	53	103
papers	citations	h-index	g-index
147	147	147	15355
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Identification of a modular super-enhancer in murine retinal development. Nature Communications, 2022, 13, 253.	12.8	12
2	Antigen cross-presentation in young tumor-bearing hosts promotes CD8 ⁺ T cell terminal differentiation. Science Immunology, 2022, 7, eabf6136.	11.9	5
3	First pointwise encoding time reduction with radial acquisition (PETRA) implementation for catheter detection in interstitial high-dose-rate (HDR) brachytherapy. Brachytherapy, 2022, 21, 501-510.	0.5	3
4	The myogenesis program drives clonal selection and drug resistance in rhabdomyosarcoma. Developmental Cell, 2022, 57, 1226-1240.e8.	7.0	24
5	Regenerative and restorative medicine for eye disease. Nature Medicine, 2022, 28, 1149-1156.	30.7	34
6	Next-generation humanized patient-derived xenograft mouse model for pre-clinical antibody studies in neuroblastoma. Cancer Immunology, Immunotherapy, 2021, 70, 721-732.	4.2	17
7	Abstract 2289: Empowering point-and-click genomic analysis with large pediatric genomic reference data on St. Jude Cloud. , 2021, , .		0
8	Retinoblastoma from human stem cell-derived retinal organoids. Nature Communications, 2021, 12, 4535.	12.8	48
9	Abstract 1543: Mining cancer-specific isoforms as CAR T-cell therapy targets for pediatric solid and brain tumors. , 2021, , .		1
10	St. Jude Cloud: A Pediatric Cancer Genomic Data-Sharing Ecosystem. Cancer Discovery, 2021, 11, 1082-1099.	9.4	109
11	The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma. Nature Communications, 2021, 12, 6468.	12.8	35
12	Methylation profiling reveals novel molecular classes of rhabdomyosarcoma. Scientific Reports, 2021, 11, 22213.	3.3	8
13	Pan-neuroblastoma analysis reveals age- and signature-associated driver alterations. Nature Communications, 2020, 11, 5183.	12.8	87
14	A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nature Medicine, 2020, 26, 792-802.	30.7	381
15	Longitudinal NK cell kinetics and cytotoxicity in children with neuroblastoma enrolled in a clinical phase II trial. , 2020, 8, e000176.		14
16	Distinct Developmental Mechanisms Act Independently to Shape Biased Synaptic Divergence from an Inhibitory Neuron. Current Biology, 2020, 30, 1258-1268.e2.	3.9	15
17	MYCN amplification and ATRX mutations are incompatible in neuroblastoma. Nature Communications, 2020, 11, 913.	12.8	66
18	ATRX In-Frame Fusion Neuroblastoma Is Sensitive to EZH2 Inhibition via Modulation of Neuronal Gene Signatures. Cancer Cell, 2019, 36, 512-527.e9.	16.8	44

#	Article	IF	CITATIONS
19	Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in Pediatric Rhabdoid Tumors. Cell Reports, 2019, 28, 2331-2344.e8.	6.4	24
20	Nucleome Dynamics during Retinal Development. Neuron, 2019, 104, 512-528.e11.	8.1	70
21	Interleukin-15 Enhances Anti-GD2 Antibody-Mediated Cytotoxicity in an Orthotopic PDX Model of Neuroblastoma. Clinical Cancer Research, 2019, 25, 7554-7564.	7.0	33
22	The Clonal Evolution of Metastatic Osteosarcoma as Shaped by Cisplatin Treatment. Molecular Cancer Research, 2019, 17, 895-906.	3.4	40
23	Retinoblastoma Tumorigenesis. , 2019, , 67-77.		Ο
24	DNA Methylation Profiling Reveals Prognostically Significant Groups in Pediatric Adrenocortical Tumors: A Report From the International Pediatric Adrenocortical Tumor Registry. JCO Precision Oncology, 2019, 3, 1-21.	3.0	6
25	Combinatorial screening using orthotopic patient derived xenograft-expanded early phase cultures of osteosarcoma identify novel therapeutic drug combinations. Cancer Letters, 2019, 442, 262-270.	7.2	23
26	OR02-1 DNA Methylation Profiling in Pediatric Adrenocortical Tumors Reveals Distinct Methylation Signatures with Prognostic Significance: A Report from the International Pediatric Adrenocortical Tumor Registry. Journal of the Endocrine Society, 2019, 3, .	0.2	0
27	Retinal Cell Type DNA Methylation and Histone Modifications Predict Reprogramming Efficiency and Retinogenesis in 3D Organoid Cultures. Cell Reports, 2018, 22, 2601-2614.	6.4	63
28	The role of interleukin-2, all-trans retinoic acid, and natural killer cells: surveillance mechanisms in anti-GD2 antibody therapy in neuroblastoma. Cancer Immunology, Immunotherapy, 2018, 67, 615-626.	4.2	23
29	Identification of Therapeutic Targets in Rhabdomyosarcoma through Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell, 2018, 34, 411-426.e19.	16.8	106
30	ATRX and DAXX: Mechanisms and Mutations. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026567.	6.2	153
31	Performance of a docking/molecular dynamics protocol for virtual screening of nutlin-class inhibitors of Mdmx. Journal of Molecular Graphics and Modelling, 2017, 74, 54-60.	2.4	12
32	The Dynamic Epigenetic Landscape of the Retina During Development, Reprogramming, and Tumorigenesis. Neuron, 2017, 94, 550-568.e10.	8.1	222
33	Orthotopic patient-derived xenografts of paediatric solid tumours. Nature, 2017, 549, 96-100.	27.8	223
34	The neoepitope landscape in pediatric cancers. Genome Medicine, 2017, 9, 78.	8.2	77
35	Targeting the cell cycle for cancer therapy in rhabdomyosarcoma Journal of Clinical Oncology, 2017, 35, 10535-10535.	1.6	1
36	Phase I study of talazoparib and irinotecan in children and young adults with recurrent/refractory solid tumors Journal of Clinical Oncology, 2017, 35, 10542-10542.	1.6	5

#	Article	IF	CITATIONS
37	An eye on retinal recovery. Nature, 2016, 540, 350-351.	27.8	5
38	Stem Cells Expand Insights into Human Brain Evolution. Cell Stem Cell, 2016, 18, 425-426.	11.1	11
39	ATRX binds to atypical chromatin domains at the 3′ exons of zinc finger genes to preserve H3K9me3 enrichment. Epigenetics, 2016, 11, 398-414.	2.7	59
40	Lessons from Retinoblastoma: Implications for Cancer, Development, Evolution, and Regenerative Medicine. Trends in Molecular Medicine, 2016, 22, 863-876.	6.7	34
41	Reprogramming of mouse retinal neurons and standardized quantification of their differentiation in 3D retinal cultures. Nature Protocols, 2016, 11, 1955-1976.	12.0	11
42	Monitoring Ligand-Induced Protein Ordering in Drug Discovery. Journal of Molecular Biology, 2016, 428, 1290-1303.	4.2	29
43	The Childhood Solid Tumor Network: A new resource for the developmental biology and oncology research communities. Developmental Biology, 2016, 411, 287-293.	2.0	63
44	Association of age at diagnosis and stage of disease with <i>ATRX</i> mutations in neuroblastoma Journal of Clinical Oncology, 2016, 34, 10525-10525.	1.6	2
45	Progress in Small Molecule Therapeutics for the Treatment of Retinoblastoma. Mini-Reviews in Medicinal Chemistry, 2016, 16, 430-454.	2.4	42
46	Current and emerging therapy for improving outcomes in patients with intraocular retinoblastoma. Expert Opinion on Orphan Drugs, 2015, 3, 1155-1166.	0.8	0
47	Brg1 coordinates multiple processes during retinogenesis and is a tumor suppressor in retinoblastoma. Development (Cambridge), 2015, 142, 4092-4106.	2.5	30
48	Genetics and Epigenetics of Human Retinoblastoma. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 547-562.	22.4	109
49	The Genomic Landscape of Childhood and Adolescent Melanoma. Journal of Investigative Dermatology, 2015, 135, 816-823.	0.7	148
50	Genomic landscape of paediatric adrenocortical tumours. Nature Communications, 2015, 6, 6302.	12.8	166
51	Quantification of Retinogenesis in 3D Cultures Reveals Epigenetic Memory and Higher Efficiency in iPSCs Derived from Rod Photoreceptors. Cell Stem Cell, 2015, 17, 101-115.	11.1	88
52	A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nature Genetics, 2015, 47, 615-624.	21.4	207
53	CONSERTING: integrating copy-number analysis with structural-variation detection. Nature Methods, 2015, 12, 527-530.	19.0	68
54	Development and characterization of a human orthotopic neuroblastoma xenograft. Developmental Biology, 2015, 407, 344-355.	2.0	30

#	Article	IF	CITATIONS
55	Systematic Screening Identifies Dual PI3K and mTOR Inhibition as a Conserved Therapeutic Vulnerability in Osteosarcoma. Clinical Cancer Research, 2015, 21, 3216-3229.	7.0	58
56	TNF Counterbalances the Emergence of M2 Tumor Macrophages. Cell Reports, 2015, 12, 1902-1914.	6.4	232
57	Preclinical Models Provide Scientific Justification and Translational Relevance for Moving Novel Therapeutics into Clinical Trials for Pediatric Cancer. Cancer Research, 2015, 75, 5176-5186.	0.9	14
58	Genetically Engineered Mouse and Orthotopic Human Tumor Xenograft Models of Retinoblastoma. Methods in Molecular Biology, 2015, 1267, 307-317.	0.9	2
59	Genetic and Epigenetic Discoveries in Human Retinoblastoma. Critical Reviews in Oncogenesis, 2015, 20, 217-225.	0.4	36
60	Retinoblastoma Tumorigenesis. , 2015, , 61-68.		0
61	The Childhood Solid Tumor Network: A St. Jude Initiative Journal of Clinical Oncology, 2015, 33, e21022-e21022.	1.6	0
62	Loss of STAG2 expression and prognosis in Ewing sarcoma family of tumors Journal of Clinical Oncology, 2015, 33, 10024-10024.	1.6	0
63	Targeting the DNA Repair Pathway in Ewing Sarcoma. Cell Reports, 2014, 9, 829-840.	6.4	141
64	Postâ€transcriptional gene expression control by <scp>NANOS</scp> is upâ€regulated and functionally important in <scp>pR</scp> bâ€deficient cells. EMBO Journal, 2014, 33, 2201-2215.	7.8	25
65	Genomic Landscape of Ewing Sarcoma Defines an Aggressive Subtype with Co-Association of <i>STAG2</i> and <i>TP53</i> Mutations. Cancer Discovery, 2014, 4, 1342-1353.	9.4	418
66	Pharmacokinetics and Efficacy of the Spleen Tyrosine Kinase Inhibitor R406 after Ocular Delivery for Retinoblastoma. Pharmaceutical Research, 2014, 31, 3060-3072.	3.5	24
67	The ATRX cDNA is prone to bacterial IS10 element insertions that alter its structure. SpringerPlus, 2014, 3, 222.	1.2	3
68	Recurrent Somatic Structural Variations Contribute to Tumorigenesis in Pediatric Osteosarcoma. Cell Reports, 2014, 7, 104-112.	6.4	583
69	RB1 gene inactivation by chromothripsis in human retinoblastoma. Oncotarget, 2014, 5, 438-450.	1.8	104
70	Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression. Oncotarget, 2014, 5, 9594-9608.	1.8	35
71	Incorporating PARP inhibitors in translational studies for Ewing's sarcoma Journal of Clinical Oncology, 2014, 32, e21025-e21025.	1.6	0
72	Preclinical evaluation of PARP inhibitors in combination with DNA-damaging agents in a Ewing sarcoma orthotopic xenograft model Journal of Clinical Oncology, 2014, 32, 10073-10073.	1.6	0

#	Article	IF	CITATIONS
73	Molecular analysis of solid tumors (MAST): A protocol for comprehensive preclinical evaluation of pediatric solid tumors Journal of Clinical Oncology, 2014, 32, 10036-10036.	1.6	0
74	Targeting Oxidative Stress in Embryonal Rhabdomyosarcoma. Cancer Cell, 2013, 24, 710-724.	16.8	252
75	Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nature Reviews Cancer, 2013, 13, 397-411.	28.4	632
76	Cross-species genomic and epigenomic landscape of retinoblastoma. Oncotarget, 2013, 4, 844-859.	1.8	37
77	Targeting retinoblastoma: therapeutic inhibition using catalytic antioxidant cerium oxide nanoparticles. FASEB Journal, 2013, 27, 1088.16.	0.5	2
78	Synthetic lethality between Rb, p53 and Dicer or miR-17–92 in retinal progenitors suppresses retinoblastoma formation. Nature Cell Biology, 2012, 14, 958-965.	10.3	79
79	A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature, 2012, 481, 329-334.	27.8	442
80	Association of Age at Diagnosis and Genetic Mutations in Patients With Neuroblastoma. JAMA - Journal of the American Medical Association, 2012, 307, 1062.	7.4	379
81	Analysis of MDM2 and MDM4 Single Nucleotide Polymorphisms, mRNA Splicing and Protein Expression in Retinoblastoma. PLoS ONE, 2012, 7, e42739.	2.5	68
82	Comprehensive preclinical testing for neuroblastoma using orthotopic xenografts of a patient tumor Journal of Clinical Oncology, 2012, 30, e13584-e13584.	1.6	1
83	SYK expression in metastatic retinoblastoma Journal of Clinical Oncology, 2012, 30, e13544-e13544.	1.6	1
84	Whole-Body Physiologically Based Pharmacokinetic Model for Nutlin-3a in Mice after Intravenous and Oral Administration. Drug Metabolism and Disposition, 2011, 39, 15-21.	3.3	53
85	Coexpression of Normally Incompatible Developmental Pathways in Retinoblastoma Genesis. Cancer Cell, 2011, 20, 260-275.	16.8	123
86	Automated Tracing of Horizontal Neuron Processes During Retinal Development. Neurochemical Research, 2011, 36, 583-593.	3.3	2
87	Subconjunctival carboplatin and systemic topotecan treatment in preclinical models of retinoblastoma. Cancer, 2011, 117, 421-434.	4.1	46
88	Childhood Cancer and Developmental Biology. Current Topics in Developmental Biology, 2011, 94, 1-13.	2.2	20
89	Targeting the p53 Pathway in Retinoblastoma with Subconjunctival Nutlin-3a. Cancer Research, 2011, 71, 4205-4213.	0.9	89
90	Retinoblastoma (Rb) regulates laminar dendritic arbor reorganization in retinal horizontal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21111-21116.	7.1	4

#	Article	IF	CITATIONS
91	Superselective Intraophthalmic Artery Chemotherapy. JAMA Ophthalmology, 2011, 129, 1490.	2.4	31
92	Preclinical Models for Neuroblastoma: Establishing a Baseline for Treatment. PLoS ONE, 2011, 6, e19133.	2.5	77
93	Biology of Retinoblastoma. Pediatric Oncology, 2010, , 1-9.	0.5	1
94	Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proceedings of the United States of America, 2009, 106, 6685-6690.	7.1	207
95	Changes in Retinoblastoma Cell Adhesion Associated with Optic Nerve Invasion. Molecular and Cellular Biology, 2009, 29, 6268-6282.	2.3	35
96	Developmental sources of conservation and variation in the evolution of the primate eye. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8963-8968.	7.1	72
97	AAV-mediated Local Delivery of Interferon-β for the Treatment of Retinoblastoma in Preclinical Models. NeuroMolecular Medicine, 2009, 11, 43-52.	3.4	28
98	Mutations and cancer: one or two historical perspectives?. Lancet Oncology, The, 2009, 10, 834.	10.7	7
99	Statistical analysis of data from retroviral clonal experiments in the developing retina. Brain Research, 2008, 1192, 178-185.	2.2	8
100	Special issue on retinal development. Brain Research, 2008, 1192, 1-2.	2.2	0
101	N-myc coordinates retinal growth with eye size during mouse development. Genes and Development, 2008, 22, 179-193.	5.9	45
102	A new model of tumor susceptibility following tumor suppressor gene inactivation. Cell Cycle, 2008, 7, 735-740.	2.6	14
103	Retinoblastoma: One World, One Vision. Pediatrics, 2008, 122, e763-e770.	2.1	115
104	MDMX: from bench to bedside. Journal of Cell Science, 2007, 120, 371-378.	2.0	218
105	Retinoblastoma: From the Two-Hit Hypothesis to Targeted Chemotherapy. Cancer Research, 2007, 67, 7547-7550.	0.9	48
106	Neuronal Differentiation and Synaptogenesis in Retinoblastoma. Cancer Research, 2007, 67, 2701-2711.	0.9	38
107	Targeting MDM2 and MDMX in Retinoblastoma. Current Cancer Drug Targets, 2007, 7, 689-695.	1.6	40
108	Differentiated Horizontal Interneurons Clonally Expand to Form Metastatic Retinoblastoma in Mice. Cell, 2007, 131, 378-390.	28.9	174

#	Article	IF	CITATIONS
109	Cellular and genetic events in retinoblastoma tumorigenesis. , 2007, , 405-409.		0
110	Compensation by tumor suppressor genes during retinal development in mice and humans. BMC Biology, 2006, 4, 14.	3.8	92
111	Clutamate regulates retinal progenitors cells proliferation during development. European Journal of Neuroscience, 2006, 24, 969-980.	2.6	34
112	Preparation and square wave electroporation of retinal explant cultures. Nature Protocols, 2006, 1, 2710-2718.	12.0	58
113	Inactivation of the p53 pathway in retinoblastoma. Nature, 2006, 444, 61-66.	27.8	550
114	Mosaic deletion ofRb arrests rod differentiation and stimulates ectopic synaptogenesis in the mouse retina. Journal of Comparative Neurology, 2006, 498, 112-128.	1.6	23
115	An E2F Binding-Deficient Rb1 Protein Partially Rescues Developmental Defects Associated with Rb1 Nullizygosity. Molecular and Cellular Biology, 2006, 26, 1527-1537.	2.3	34
116	The search for the retinoblastoma cell of origin. Nature Reviews Cancer, 2005, 5, 91-101.	28.4	201
117	Use of Preclinical Models to Improve Treatment of Retinoblastoma. PLoS Medicine, 2005, 2, e332.	8.4	52
118	Topotecan Combination Chemotherapy in Two New Rodent Models of Retinoblastoma. Clinical Cancer Research, 2005, 11, 7569-7578.	7.0	117
119	Perspective: New genetic tools for studying retinal development and disease. Visual Neuroscience, 2005, 22, 553-560.	1.0	10
120	Regulation of proliferation during central nervous system development. Seminars in Cell and Developmental Biology, 2005, 16, 407-421.	5.0	68
121	The First Knockout Mouse Model of Retinoblastoma. Cell Cycle, 2004, 3, 950-957.	2.6	113
122	Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nature Genetics, 2004, 36, 351-360.	21.4	191
123	Developmental defects in Rb-deficient retinae. Vision Research, 2004, 44, 3323-3333.	1.4	31
124	Retinal degeneration in Aipl1-deficient mice: a new genetic model of Leber congenital amaurosis. Molecular Brain Research, 2004, 132, 208-220.	2.3	45
125	The first knockout mouse model of retinoblastoma. Cell Cycle, 2004, 3, 952-9.	2.6	90
126	Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nature Genetics, 2003, 34, 53-58.	21.4	364

#	Article	IF	CITATIONS
127	The Homeodomain Proteins Prox1, Six3 and Chx10 Regulate Proliferation, Cell Fate Specification and Differentiation in the Developing Retina. Cell Cycle, 2003, 2, 347-354.	2.6	65
128	Regulation of proliferation, cell fate specification and differentiation by the homeodomain proteins Prox1, Six3, and Chx10 in the developing retina. Cell Cycle, 2003, 2, 350-7.	2.6	41
129	The inherited blindness associated protein AIPL1 interacts with the cell cycle regulator protein NUB1. Human Molecular Genetics, 2002, 11, 2723-2733.	2.9	53
130	Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development (Cambridge), 2002, 129, 2835-2849.	2.5	177
131	Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors. Development (Cambridge), 2002, 129, 2835-49.	2.5	87
132	p27 ^{Kip1} and p57 ^{Kip2} Regulate Proliferation in Distinct Retinal Progenitor Cell Populations. Journal of Neuroscience, 2001, 21, 4259-4271.	3.6	206
133	The p57Kip2 cyclin kinase inhibitor is expressed by a restricted set of amacrine cells in the rodent retina. Journal of Comparative Neurology, 2001, 429, 601-614.	1.6	44
134	Regulating proliferation during retinal development. Nature Reviews Neuroscience, 2001, 2, 333-342.	10.2	220
135	Control of Müller glial cell proliferation and activation following retinal injury. Nature Neuroscience, 2000, 3, 873-880.	14.8	400