
Jonathan L Sievers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/910927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Simons Observatory: science goals and forecasts. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 056-056.	5.4	741
2	THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM. Astrophysical Journal, 2011, 739, 52.	4.5	329
3	Dense magnetized plasma associated with a fast radio burst. Nature, 2015, 528, 523-525.	27.8	297
4	EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS. Astrophysical Journal, 2010, 725, 496-514.	4.5	282
5	The Anisotropy of the Microwave Background tol= 3500: Deep Field Observations with the Cosmic Background Imager. Astrophysical Journal, 2003, 591, 540-555.	4.5	262
6	Neutrino physics from the cosmic microwave background and large scale structure. Astroparticle Physics, 2015, 63, 66-80.	4.3	218
7	The Atacama Cosmology Telescope: cosmological parameters from three seasons of data. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 060-060.	5.4	215
8	The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 014-014.	5.4	194
9	ACTPol: a polarization-sensitive receiver for the Atacama Cosmology Telescope. Proceedings of SPIE, 2010, , .	0.8	144
10	The Atacama Cosmology Telescope: likelihood for small-scale CMB data. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 025-025.	5.4	137
11	First Intrinsic Anisotropy Observations with the Cosmic Background Imager. Astrophysical Journal, 2001, 549, L1-L5.	4.5	133
12	THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE 600 < â,," < 8000 COSMIC MICROWAVI BACKGROUND POWER SPECTRUM AT 148 GHz. Astrophysical Journal, 2010, 722, 1148-1161.	- 4.5	107
13	Two-season Atacama Cosmology Telescope polarimeter lensing power spectrum. Physical Review D, 2017, 95, .	4.7	104
14	MUSTANG HIGH ANGULAR RESOLUTION SUNYAEV-ZEL'DOVICH EFFECT IMAGING OF SUBSTRUCTURE IN FOUR GALAXY CLUSTERS. Astrophysical Journal, 2011, 734, 10.	4.5	103
15	Inflation physics from the cosmic microwave background and large scale structure. Astroparticle Physics, 2015, 63, 55-65.	4.3	90
16	Evidence for the kinematic Sunyaev-Zel'dovich effect with the Atacama Cosmology Telescope and velocity reconstruction from the Baryon Oscillation Spectroscopic Survey. Physical Review D, 2016, 93, .	4.7	90
17	The Cosmic Background Imager. Publications of the Astronomical Society of the Pacific, 2002, 114, 83-97.	3.1	84
18	Precision epoch of reionization studies with next-generation CMB experiments. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 010-010.	5.4	83

JONATHAN L SIEVERS

#	Article	IF	CITATIONS
19	LOCALIZING COMPACT BINARY INSPIRALS ON THE SKY USING GROUND-BASED GRAVITATIONAL WAVE INTERFEROMETERS. Astrophysical Journal, 2011, 739, 99.	4.5	81
20	THE ATACAMA COSMOLOGY TELESCOPE (ACT): BEAM PROFILES AND FIRST SZ CLUSTER MAPS. Astrophysical Journal, Supplement Series, 2010, 191, 423-438.	7.7	79
21	Non-cosmological FRBs from young supernova remnant pulsars. Monthly Notices of the Royal Astronomical Society: Letters, 0, , .	3.0	78
22	Weak-lensing Mass Calibration of ACTPol Sunyaev–Zel'dovich Clusters with the Hyper Suprime-Cam Survey. Astrophysical Journal, 2019, 875, 63.	4.5	72
23	Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 008-008.	5.4	70
24	THE ATACAMA COSMOLOGY TELESCOPE: LENSING OF CMB TEMPERATURE AND POLARIZATION DERIVED FROM COSMIC INFRARED BACKGROUND CROSS-CORRELATION. Astrophysical Journal, 2015, 808, 7.	4.5	66
25	Cosmological parameters from pre-planck cosmic microwave background measurements. Physical Review D, 2013, 87, .	4.7	65
26	IMPLICATIONS OF A HIGH ANGULAR RESOLUTION IMAGE OF THE SUNYAEV-ZEL'DOVICH EFFECT IN RXJ1347–1145. Astrophysical Journal, 2010, 716, 739-745.	4.5	62
27	First measurement of the cross-correlation of CMB lensing and galaxy lensing. Physical Review D, 2015, 91, .	4.7	60
28	THE ATACAMA COSMOLOGY TELESCOPE: DETECTION OF SUNYAEV-ZEL'DOVICH DECREMENT IN GROUPS AND CLUSTERS ASSOCIATED WITH LUMINOUS RED GALAXIES. Astrophysical Journal, 2011, 736, 39.	4.5	52
29	Joint Analysis of Cluster Observations. I. Mass Profile of Abell 478 from Combined Xâ€Ray, Sunyaevâ€Zel'dovich, and Weak‣ensing Data. Astrophysical Journal, 2007, 664, 162-180.	4.5	48
30	The Atacama Cosmology Telescope: dusty star-forming galaxies and active galactic nuclei in the Southern survey. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1556-1574.	4.4	47
31	The C-Band All-Sky Survey (C-BASS): design and capabilities. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3224-3242.	4.4	44
32	Cosmology with the kinematic Sunyaev-Zeldovich effect: Breaking the optical depth degeneracy with fast radio bursts. Physical Review D, 2019, 100, .	4.7	41
33	Constraints on the FRB rate at 700–900ÂMHz. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1054-1058.	4.4	38
34	Results from the Atacama B-mode Search (ABS) experiment. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 005-005.	5.4	37
35	Cosmological parameters from pre-Planck CMB measurements: A 2017 update. Physical Review D, 2017, 95, .	4.7	33
36	A 31 GHz SURVEY OF LOW-FREQUENCY SELECTED RADIO SOURCES. Astrophysical Journal, 2009, 704, 1433-1447.	4.5	33

JONATHAN L SIEVERS

#	Article	IF	CITATIONS
37	Radio and X-Ray Observations of the Luminous Fast Blue Optical Transient AT 2020xnd. Astrophysical Journal, 2022, 926, 112.	4.5	29
38	The Atacama Cosmology Telescope: cross correlation with <i>Planck</i> maps. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 016-016.	5.4	27
39	Probing diffuse gas with fast radio bursts. Physical Review D, 2019, 100, .	4.7	25
40	Pressure Profiles and Mass Estimates Using High-resolution Sunyaev–Zel'dovich Effect Observations of Zwicky 3146 with MUSTANG-2. Astrophysical Journal, 2020, 891, 90.	4.5	25
41	THE ATACAMA COSMOLOGY TELESCOPE: HIGH-RESOLUTION SUNYAEV-ZEL'DOVICH ARRAY OBSERVATIONS OF ACT SZE-SELECTED CLUSTERS FROM THE EQUATORIAL STRIP. Astrophysical Journal, 2012, 751, 12.	4.5	23
42	Hydrogen Intensity and Real-Time Analysis Experiment: 256-element array status and overview. Journal of Astronomical Telescopes, Instruments, and Systems, 2022, 8, .	1.8	22
43	Galaxy Cluster Pressure Profiles as Determined by Sunyaev Zel'dovich Effect Observations with MUSTANG and Bolocam. II. Joint Analysis of 14 Clusters. Astrophysical Journal, 2017, 838, 86.	4.5	21
44	Detection of spectral variations of Anomalous Microwave Emission with QUIJOTE and C-BASS. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2927-2943.	4.4	17
45	ACTPol: on-sky performance and characterization. Proceedings of SPIE, 2014, , .	0.8	16
46	Atacama Cosmology Telescope: Dusty Star-forming Galaxies and Active Galactic Nuclei in the Equatorial Survey. Astrophysical Journal, 2020, 893, 104.	4.5	16
47	A high-resolution view of the filament of gas between AbellÂ399 and AbellÂ401 from the Atacama Cosmology Telescope and MUSTANG-2. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3335-3355.	4.4	14
48	GMRT 610ÂMHz observations of galaxy clusters in the ACT equatorial sample. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1332-1349.	4.4	12
49	The C-Band All-Sky Survey (C-BASS): constraining diffuse Galactic radio emission in the North Celestial Pole region. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2844-2860.	4.4	12
50	The Massive and Distant Clusters of WISE Survey. X. Initial Results from a Sunyaev–Zeldovich Effect Study of Massive Galaxy Clusters at zÂ>Â1 Using MUSTANG2 on the GBT. Astrophysical Journal, 2020, 902, 144.	4.5	12
51	Active gas features in three HSC-SSP CAMIRA clusters revealed by high angular resolution analysis of MUSTANG-2 SZE and XXL X-ray observations. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1701-1732.	4.4	11
52	SALT spectroscopic observations of galaxy clusters detected by ACT and a type II quasar hosted by a brightest cluster galaxy. Monthly Notices of the Royal Astronomical Society, 2015, 449, 4010-4026.	4.4	10
53	The MUSTANG Galactic Plane Survey (MGPS90) Pilot. Astrophysical Journal, Supplement Series, 2020, 248, 24.	7.7	10
54	The Atacama Cosmology Telescope: CO(J = 3 – 2) Mapping and Lens Modeling of an ACT-selected Dusty Star-forming Galaxy. Astrophysical Journal, 2019, 879, 95.	4.5	9

JONATHAN L SIEVERS

#	Article	IF	CITATIONS
55	CARMA FOLLOW-UP OF THE NORTHERN UNCONFIRMED <i>PLANCK</i> GALAXY CLUSTER CANDIDATES. Astrophysical Journal, 2012, 749, 46.	4.5	8
56	Thermodynamic evolution of the z = 1.75 galaxy cluster IDCS J1426.5+3508. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5896-5909.	4.4	8
57	Confirmation of Enhanced Long-wavelength Dust Emission in OMC 2/3. Astrophysical Journal, 2020, 893, 13.	4.5	8
58	Cosmic microwave background observations from the Cosmic Background Imager and Very Small Array: a comparison of coincident maps and parameter estimation methods. Monthly Notices of the Royal Astronomical Society, 2005, 363, 1125-1135.	4.4	7
59	The Cosmic Background Imager 2. Monthly Notices of the Royal Astronomical Society, 2011, 418, 2720-2729.	4.4	6
60	The Massive and Distant Clusters of WISE Survey. IX. High Radio Activity in a Merging Cluster. Astrophysical Journal, 2020, 898, 145.	4.5	6
61	A Bayesian approach to high fidelity interferometric calibration â^ II: demonstration with simulated data. Monthly Notices of the Royal Astronomical Society, 2022, 517, 935-961.	4.4	5
62	GPU kernels for high-speed 4-bit astrophysical data processing. , 2015, , .		4
63	The C-Band All-Sky Survey (C-BASS): Simulated parametric fitting in single pixels in total intensity and polarization. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2958-2975.	4.4	4
64	The LABOCA/ACT Survey of Clusters at All Redshifts: Multiwavelength Analysis of Background Submillimeter Galaxies. Astrophysical Journal, 2018, 855, 26.	4.5	3
65	Observations of compact sources in galaxy clusters using MUSTANG2. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2600-2612.	4.4	3
66	A Bayesian approach to high-fidelity interferometric calibration – I. Mathematical formalism. Monthly Notices of the Royal Astronomical Society, 2022, 517, 910-934.	4.4	3
67	The C-Band All-Sky Survey: total intensity point-source detection over the northern sky. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1941-1958.	4.4	1
68	The correlation calibration of PAPER-64 data. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1680-1696.	4.4	1
69	A Study of 90 GHz Dust Emissivity on Molecular Cloud and Filament Scales. Astrophysical Journal, 2022, 929, 102.	4.5	1