Raul F Lobo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9109261/publications.pdf

Version: 2024-02-01

		26626	29154
161	11,760	56	104
papers	citations	h-index	g-index
165	165	165	9805
103	103	103	7003
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ga ₂ O ₂ ²⁺ Stabilized by Paired Framework Al Atoms in MFI: A Highly Reactive Site in Nonoxidative Propane Dehydrogenation. ACS Catalysis, 2022, 12, 1775-1783.	11.2	18
2	Propane Dehydrogenation over Extra-Framework In(I) in Chabazite Zeolites. Chemical Science, 2022, 13, 2954-2964.	7.4	12
3	Olefin methylation over iron zeolites and the methanol to hydrocarbons reaction. Applied Catalysis A: General, 2022, 641, 118645.	4.3	3
4	Comparison of 4,4′-Dimethylbiphenyl from Biomass-Derived Furfural and Oil-Based Resource: Technoeconomic Analysis and Life-Cycle Assessment. Industrial & Engineering Chemistry Research, 2022, 61, 8963-8972.	3.7	6
5	Ga speciation in Ga/H-ZSM-5 by in-situ transmission FTIR spectroscopy. Journal of Catalysis, 2021, 393, 60-69.	6.2	25
6	Improved slit-shaped microseparator and its integration with a microreactor for modular biomanufacturing. Green Chemistry, 2021, 23, 3700-3714.	9.0	6
7	Ethane Dehydrogenation on Single and Dual Centers of Ga-modified Î ³ -Al ₂ O ₃ . ACS Catalysis, 2021, 11, 1380-1391.	11.2	30
8	Selective Synthesis of 4,4′-Dimethylbiphenyl from 2-Methylfuran. ACS Sustainable Chemistry and Engineering, 2021, 9, 3316-3323.	6.7	11
9	Carbocation-Mediated Cyclization of Trienes in Acid Zeolites. Journal of Physical Chemistry A, 2021, 125, 4062-4069.	2.5	2
10	Oxidative coupling of 2-methyl furoate: A scalable synthesis of dimethyl 2,2'-bifuran-5,5'-dicarboxylate. Applied Catalysis A: General, 2021, 619, 118138.	4.3	5
11	Understanding the Correlation between Ga Speciation and Propane Dehydrogenation Activity on Ga/H-ZSM-5 Catalysts. ACS Catalysis, 2021, 11, 10647-10659.	11.2	29
12	Nickel-Loaded SSZ-13 Zeolite-Based Sensor for the Direct Electrical Readout Detection of NO ₂ . Industrial & Engineering Chemistry Research, 2021, 60, 14371-14380.	3.7	4
13	Scaleup of a Single-Mode Microwave Reactor. Industrial & Engineering Chemistry Research, 2020, 59, 2516-2523.	3.7	36
14	Role of Boron in Enhancing the Catalytic Performance of Supported Platinum Catalysts for the Nonoxidative Dehydrogenation of <i>n</i> -Butane. ACS Catalysis, 2020, 10, 1500-1510.	11,2	21
15	Selective and Efficient Production of Biomass-Derived Vinylfurans. ACS Sustainable Chemistry and Engineering, 2020, 8, 11930-11939.	6.7	3
16	Linking low and high temperature NO oxidation mechanisms over BrÃ,nsted acidic chabazite to dynamic changes of the active site. Journal of Catalysis, 2020, 389, 195-206.	6.2	9
17	Hydrothermal synthesis of alkali-free chabazite zeolites. Journal of Porous Materials, 2020, 27, 1481-1489.	2.6	9
18	Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts. Applied Catalysis A: General, 2019, 583, 117144.	4.3	69

#	Article	IF	CITATIONS
19	Reverse Water-Gas Shift Iron Catalyst Derived from Magnetite. Catalysts, 2019, 9, 773.	3.5	44
20	Electron Transfers Under Confinement in Channel-Type Zeolites., 2019,, 249-271.		3
21	Lewis Acid Site and Hydrogen-Bond-Mediated Polarization Synergy in the Catalysis of Diels–Alder Cycloaddition by Band-Gap Transition-Metal Oxides. ACS Catalysis, 2019, 9, 701-715.	11.2	15
22	On the Mechanism of Ammonia SCR over Cu- and Fe-Containing Zeolite Catalysts. Structure and Bonding, 2018, , 155-178.	1.0	4
23	H ₂ Adsorption on Cu(I)–SSZ-13. Journal of Physical Chemistry C, 2018, 122, 540-548.	3.1	16
24	Nonâ€oxidative Coupling of Methane to Ethylene Using Mo ₂ C/[B]ZSMâ€5. ChemPhysChem, 2018, 19, 504-511.	2.1	38
25	Effect of steam and CO ₂ on ethane activation over Zn-ZSM-5. Catalysis Science and Technology, 2018, 8, 358-366.	4.1	33
26	Bioderived Muconates by Crossâ€Metathesis and Their Conversion into Terephthalates. ChemSusChem, 2018, 11, 773-780.	6.8	18
27	Formaldehyde–isobutene Prins condensation over MFI-type zeolites. Catalysis Science and Technology, 2018, 8, 5794-5806.	4.1	23
28	Acylation of methylfuran with Brønsted and Lewis acid zeolites. Applied Catalysis A: General, 2018, 564, 90-101.	4.3	35
29	On the Structure–Property Relationships of Cationâ€Exchanged ZKâ€5 Zeolites for CO ₂ Adsorption. ChemSusChem, 2017, 10, 946-957.	6.8	36
30	Catalysis of the Diels–Alder Reaction of Furan and Methyl Acrylate in Lewis Acidic Zeolites. ACS Catalysis, 2017, 7, 2240-2246.	11.2	39
31	Formation of [Cu ₂ O ₂] ²⁺ and [Cu ₂ O] ²⁺ toward C–H Bond Activation in Cu-SSZ-13 and Cu-SSZ-39. ACS Catalysis, 2017, 7, 4291-4303.	11.2	195
32	General Acid-Type Catalysis in the Dehydrative Aromatization of Furans to Aromatics in H-[Al]-BEA, H-[Fe]-BEA, H-[Ga]-BEA, and H-[B]-BEA Zeolites. Journal of Physical Chemistry C, 2017, 121, 13666-13679.	3.1	39
33	Production of <i>p</i> å€Methylstyrene and <i>p</i> å€Divinylbenzene from Furanic Compounds. ChemSusChem, 2017, 10, 91-98.	6.8	29
34	Ethane and ethylene aromatization on zinc-containing zeolites. Catalysis Science and Technology, 2017, 7, 3562-3572.	4.1	91
35	Zeoliteâ€Catalyzed Formaldehyde–Propylene Prins Condensation. ChemCatChem, 2017, 9, 4417-4425.	3.7	19
36	Renewable <i>p</i> â€Xylene from 2,5â€Dimethylfuran and Ethylene Using Phosphorusâ€Containing Zeolite Catalysts. ChemCatChem, 2017, 9, 398-402.	3.7	118

#	Article	IF	CITATIONS
37	Zn-Promoted H-ZSM-5 for Endothermic Reforming of <i>n</i> -Hexane at High Pressures. Industrial & Lamp; Engineering Chemistry Research, 2016, 55, 3930-3938.	3.7	21
38	Ironâ€Promotion of Silicaâ€Supported Copper Catalysts for Furfural Hydrodeoxygenation. ChemCatChem, 2016, 8, 3402-3408.	3.7	36
39	Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans. ACS Central Science, 2016, 2, 820-824.	11.3	64
40	Fe/γ-Al ₂ O ₃ and Fe–K/γ-Al ₂ O ₃ as reverse water-gas shift catalysts. Catalysis Science and Technology, 2016, 6, 5267-5279.	4.1	81
41	A General Method for Aluminum Incorporation into High-Silica Zeolites Prepared in Fluoride Media. Chemistry of Materials, 2016, 28, 638-649.	6.7	32
42	Catalytic n-pentane conversion on H-ZSM-5 at high pressure. New Journal of Chemistry, 2016, 40, 4245-4251.	2.8	11
43	Lewis acidic zeolite Beta catalyst for the Meerwein–Ponndorf–Verley reduction of furfural. Catalysis Science and Technology, 2016, 6, 3018-3026.	4.1	125
44	Oxidation of zeolite acid sites in NO/O2 mixtures and the catalytic properties of the new site in NO oxidation. Journal of Catalysis, 2015, 325, 68-78.	6.2	44
45	Effect of water treatment on Sn-BEA zeolite: Origin of 960Âcmâ^'1 FTIR peak. Microporous and Mesoporous Materials, 2015, 210, 69-76.	4.4	66
46	Diels–Alder and Dehydration Reactions of Biomass-Derived Furan and Acrylic Acid for the Synthesis of Benzoic Acid. ACS Catalysis, 2015, 5, 6946-6955.	11.2	91
47	The Role of Ru and RuO ₂ in the Catalytic Transfer Hydrogenation of 5â€Hydroxymethylfurfural for the Production of 2,5â€Dimethylfuran. ChemCatChem, 2014, 6, 848-856.	3.7	136
48	Radical Cation Intermediates in Propane Dehydrogenation and Propene Hydrogenation over H-[Fe] Zeolites. Journal of Physical Chemistry C, 2014, 118, 27292-27300.	3.1	26
49	Molecular Basis for the High CO ₂ Adsorption Capacity of Chabazite Zeolites. ChemSusChem, 2014, 7, 3031-3038.	6.8	81
50	Catalytic dehydrogenation of propane over iron-silicate zeolites. Journal of Catalysis, 2014, 312, 263-270.	6.2	85
51	Low temperature catalytic NO oxidation over microporous materials. Journal of Catalysis, 2014, 311, 412-423.	6.2	55
52	Cascade of Liquidâ€Phase Catalytic Transfer Hydrogenation and Etherification of 5â€Hydroxymethylfurfural to Potential Biodiesel Components over Lewis Acid Zeolites. ChemCatChem, 2014, 6, 508-513.	3.7	104
53	Experimental and computational studies on the adsorption of CO2 and N2 on pure silica zeolites. Microporous and Mesoporous Materials, 2014, 185, 157-166.	4.4	83
54	Renewable production of phthalic anhydride from biomass-derived furan and maleic anhydride. Green Chemistry, 2014, 16, 167-175.	9.0	114

#	Article	IF	Citations
55	Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy and Environmental Science, 2014, 7, 1500-1523.	30.8	342
56	Challenges of and Insights into Acid-Catalyzed Transformations of Sugars. Journal of Physical Chemistry C, 2014, 118, 22815-22833.	3.1	88
57	Recent advances in zeolite science based on advance characterization techniques. Microporous and Mesoporous Materials, 2014, 189, 97-106.	4.4	24
58	Comparison of Homogeneous and Heterogeneous Catalysts for Glucoseâ€ŧoâ€Fructose Isomerization in Aqueous Media. ChemSusChem, 2013, 6, 2369-2376.	6.8	128
59	Catalysis by Confinement: Enthalpic Stabilization of NO Oxidation Transition States by Micropororous and Mesoporous Siliceous Materials. Journal of Physical Chemistry C, 2013, 117, 20666-20674.	3.1	44
60	Carbon Dioxide and Nitrogen Adsorption on Cation-Exchanged SSZ-13 Zeolites. Langmuir, 2013, 29, 832-839.	3.5	152
61	Analysis of visible-light-active Sn(ii)–TiO2 photocatalysts. Physical Chemistry Chemical Physics, 2013, 15, 6185.	2.8	13
62	A DFT study of the acid-catalyzed conversion of 2,5-dimethylfuran and ethylene to p-xylene. Journal of Catalysis, 2013, 297, 35-43.	6.2	139
63	Elucidation of Diels–Alder Reaction Network of 2,5-Dimethylfuran and Ethylene on HY Zeolite Catalyst. ACS Catalysis, 2013, 3, 41-46.	11.2	131
64	Probing Lewis Acid Sites in Sn-Beta Zeolite. ACS Catalysis, 2013, 3, 573-580.	11.2	137
65	Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9727-9732.	7.1	354
66	NMR and SAXS Analysis of Connectivity of Aluminum and Silicon Atoms in the Clear Sol Precursor of SSZ-13 Zeolite. Chemistry of Materials, 2012, 24, 571-578.	6.7	51
67	Unconventional, Highly Selective CO ₂ Adsorption in Zeolite SSZ-13. Journal of the American Chemical Society, 2012, 134, 1970-1973.	13.7	363
68	ZKâ€5: A CO ₂ â€Selective Zeolite with High Working Capacity at Ambient Temperature and Pressure. ChemSusChem, 2012, 5, 2237-2242.	6.8	88
69	Effect of Al on Zeolite Beta Solid State Chemistry. Topics in Catalysis, 2012, 55, 1332-1343.	2.8	8
70	Mechanisms of Quick Zeolite Beta Crystallization. Chemistry of Materials, 2012, 24, 3621-3632.	6.7	36
71	Cycloaddition of Biomass-Derived Furans for Catalytic Production of Renewable <i>p</i> -Xylene. ACS Catalysis, 2012, 2, 935-939.	11,2	400
72	Bimetallic effects in the hydrodeoxygenation of meta-cresol on γ-Al2O3 supported Pt–Ni and Pt–Co catalysts. Green Chemistry, 2012, 14, 1388.	9.0	149

#	Article	IF	Citations
73	Electron Transfers Induced by <i>t</i> -Stilbene Sorption in Acidic Aluminum, Gallium, and Boron Beta (BEA) Zeolites. Journal of Physical Chemistry C, 2012, 116, 14480-14490.	3.1	11
74	Reactions of Propylene Oxide on Supported Silver Catalysts: Insights into Pathways Limiting Epoxidation Selectivity. Topics in Catalysis, 2012, 55, 3-12.	2.8	21
75	The Synergy of the Support Acid Function and the Metal Function in the Catalytic Hydrodeoxygenation of m-Cresol. Topics in Catalysis, 2012, 55, 118-128.	2.8	123
76	Formation and evolution of naphthalene radical cations in thermally treated H-ZSM-5 zeolites. Microporous and Mesoporous Materials, 2012, 155, 82-89.	4.4	12
77	SnO _{<i>x</i>} –ZnGa ₂ O ₄ Photocatalysts with Enhanced Visible Light Activity. ACS Catalysis, 2011, 1, 923-928.	11.2	51
78	Xylose Isomerization to Xylulose and its Dehydration to Furfural in Aqueous Media. ACS Catalysis, 2011, 1, 1724-1728.	11.2	301
79	Photocatalytic degradation of organic molecules on mesoporous visible-light-active Sn(II)-doped titania. Journal of Catalysis, 2011, 281, 156-168.	6.2	82
80	Highâ€Temperature Produced Catalytic Sites Selective for <i>n</i> à€Alkane Dehydrogenation in Acid Zeolites: The Case of HZSMâ€5. ChemCatChem, 2011, 3, 1333-1341.	3.7	21
81	Synthesis, characterization and photocatalytic properties of novel zinc germanate nano-materials. Journal of Solid State Chemistry, 2011, 184, 1054-1062.	2.9	52
82	Zeolite beta mechanisms of nucleation and growth. Microporous and Mesoporous Materials, 2011, 142, 104-115.	4.4	51
83	Grand canonical Monte Carlo simulation of adsorption of nitrogen and oxygen in realistic nanoporous carbon models. AICHE Journal, 2011, 57, 1496-1505.	3.6	6
84	Structure Analysis and Photocatalytic Properties of Spinel Zinc Gallium Oxonitrides. Chemistry - A European Journal, 2011, 17, 12417-12428.	3.3	13
85	The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 2011, 102, 441-448.	20.2	569
86	Externally directed assembly of disk-shaped zeolite particles by an electric field. Journal of Materials Research, 2011, 26, 215-222.	2.6	2
87	Structure and Colloidal Stability of Nanosized Zeolite Beta Precursors. Langmuir, 2010, 26, 1260-1270.	3.5	47
88	A Spinel Oxynitride with Visible‣ight Photocatalytic Activity. ChemSusChem, 2010, 3, 814-817.	6.8	29
89	Synthetic Glycolysis. ChemSusChem, 2010, 3, 1237-1240.	6.8	16
90	High-temperature dehydrogenation of defective silicalites. Microporous and Mesoporous Materials, 2010, 129, 156-163.	4.4	26

#	Article	IF	Citations
91	A fractal description of pore structure in block-copolymer templated mesoporous silicates. Microporous and Mesoporous Materials, 2010, 131, 204-209.	4.4	23
92	Indirect Fourier Transform and Model Fitting of Small Angle Neutron Scattering from Silica Nanoparticles. Particle and Particle Systems Characterization, 2010, 27, 89-99.	2.3	4
93	High-Temperature Decomposition of BrÃ,nsted Acid Sites in Gallium-Substituted Zeolites. Journal of Physical Chemistry C, 2010, 114, 19395-19405.	3.1	17
94	Analysis of Ga coordination environment in novel spinel zinc gallium oxy-nitride photocatalysts. Journal of Materials Chemistry, 2010, 20, 9787.	6.7	27
95	Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD. Journal of Physical Chemistry C, 2010, 114, 1633-1640.	3.1	342
96	Intermolecular Forces in Zeolite Adsorption and Catalysis., 2009,, 239-261.		0
97	Effects of Zeolite Structures, Exchanged Cations, and Bimetallic Formulations on the Selective Hydrogenation of Acetylene Over Zeolite-Supported Catalysts. Catalysis Letters, 2009, 130, 380-385.	2.6	9
98	Photocatalytic oxidation of ethylene by ammonium exchanged ETS-10 and AM-6. Applied Catalysis B: Environmental, 2009, 88, 232-239.	20.2	13
99	Identification of Mixed Valence Vanadium in ETS-10 Using Electron Paramagnetic Resonance, ⁵¹ V Solid-State Nuclear Magnetic Resonance, and Density Functional Theory Studies. Journal of Physical Chemistry C, 2009, 113, 10477-10484.	3.1	20
100	Chemical diversity of zeolite catalytic sites. AICHE Journal, 2008, 54, 1402-1409.	3.6	15
101	High-Temperature Dehydrogenation of Brønsted Acid Sites in Zeolites. Journal of the American Chemical Society, 2008, 130, 2460-2462.	13.7	64
102	Thermodynamics of Silica Nanoparticle Self-Assembly in Basic Solutions of Monovalent Cations. Journal of Physical Chemistry C, 2008, 112, 14754-14761.	3.1	26
103	Nanoparticle Precursors and Phase Selectivity in Hydrothermal Synthesis of Zeolite \hat{l}^2 . Chemistry of Materials, 2008, 20, 5807-5815.	6.7	68
104	A visible light photocatalyst: effects of vanadium substitution on ETS-10. Physical Chemistry Chemical Physics, 2007, 9, 5096.	2.8	22
105	Initial Stages of Self-Organization of Silicaâ° Alumina Gels in Zeolite Synthesis. Langmuir, 2007, 23, 4532-4540.	3.5	28
106	Kinetic and Thermodynamic Studies of Silica Nanoparticle Dissolution. Chemistry of Materials, 2007, 19, 4189-4197.	6.7	104
107	Effects of Vanadium Substitution on the Structure and Photocatalytic Behavior of ETS-10. Journal of Physical Chemistry C, 2007, 111, 1776-1782.	3.1	24
108	Self-Assembly and Phase Behavior of Germanium Oxide Nanoparticles in Basic Aqueous Solutions. Langmuir, 2007, 23, 2784-2791.	3.5	30

#	Article	IF	CITATIONS
109	Photocatalytic Activity of Vanadium-Substituted ETS-10. Journal of Physical Chemistry C, 2007, 111, 7029-7037.	3.1	42
110	Investigation of the Structure of Platinum Clusters Supported in Zeolite Beta Using the Pair Distribution Function. Journal of Physical Chemistry C, 2007, 111, 8573-8579.	3.1	22
111	Electronic and Geometric Properties of ETS-10:Â QM/MM Studies of Cluster Models. Journal of Physical Chemistry B, 2006, 110, 8959-8964.	2.6	25
112	The promise of emptiness. Nature, 2006, 443, 757-758.	27.8	20
113	Understanding the differences between microporous and mesoporous synthesis through the phase behavior of silica. Microporous and Mesoporous Materials, 2006, 90, 102-111.	4.4	26
114	The local and surface structure of ordered mesoporous carbons from nitrogen sorption, NEXAFS and synchrotron radiation studies. Microporous and Mesoporous Materials, 2006, 92, 81-93.	4.4	16
115	Silica Self-Assembly and Synthesis of Microporous and Mesoporous Silicates. Chemistry - A European Journal, 2006, 12, 2926-2934.	3.3	79
116	A pair distribution function analysis of zeolite beta. Microporous and Mesoporous Materials, 2005, 77, 55-66.	4.4	46
117	Variable anchoring of boron in zeolite beta. Microporous and Mesoporous Materials, 2005, 79, 215-224.	4.4	56
118	Porous amorphous carbon models from periodic Gaussian chains of amorphous polymers. Carbon, 2005, 43, 3099-3111.	10.3	57
119	Evolution of Self-Assembled Silicaâ^Tetrapropylammonium Nanoparticles at Elevated Temperatures. Journal of Physical Chemistry B, 2005, 109, 12762-12771.	2.6	86
120	Investigation of the Negative Thermal Expansion Mechanism of Zeolite Chabazite Using the Pair Distribution Function Method. Journal of Physical Chemistry B, 2005, 109, 9389-9396.	2.6	37
121	Formation and Structure of Self-Assembled Silica Nanoparticles in Basic Solutions of Organic and Inorganic Cations. Langmuir, 2005, 21, 5197-5206.	3.5	104
122	Physical Basis for the Formation and Stability of Silica Nanoparticles in Basic Solutions of Monovalent Cations. Langmuir, 2005, 21, 8960-8971.	3.5	120
123	Pair Distribution Function as a Probe for Zeolite Structures. Materials Research Society Symposia Proceedings, 2004, 840, Q1.4.1.	0.1	0
124	Structural comparison of two EUO-type zeolites investigated by neutron diffraction. Microporous and Mesoporous Materials, 2004, 71, 125-133.	4.4	9
125	A simple model describes the PDF of a non-graphitizing carbon. Carbon, 2004, 42, 2041-2048.	10.3	63
126	$\hat{Kl^2}$ -Detected XANES of Framework-Substituted FeZSM-5 Zeolites. Journal of Physical Chemistry B, 2004, 108, 10002-10011.	2.6	77

#	Article	IF	Citations
127	Spontaneous Formation of Silica Nanoparticles in Basic Solutions of Small Tetraalkylammonium Cations. Journal of Physical Chemistry B, 2004, 108, 12271-12275.	2.6	136
128	Zeolite MCM-22 Supported Heterogeneous Chromium Catalyst for Ethylene Polymerization. Catalysis Letters, 2003, 88, 227-229.	2.6	10
129	The mechanical properties of siliceous ZSM-5 (MFI) crystals. Microporous and Mesoporous Materials, 2003, 57, 1-7.	4.4	24
130	Structure of the Silica Phase Extracted from Silica/(TPA)OH Solutions Containing Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 10006-10016.	2.6	164
131	Introduction to the Structural Chemistry of Zeolites., 2003,,.		5
132	New Description of the Disorder in Zeolite ZSM-48. Journal of the American Chemical Society, 2002, 124, 13222-13230.	13.7	65
133	Paramagnetic Effect of Oxygen in the 23Na MAS NMR and 23Na MQMAS NMR Spectroscopy of Zeolite LiNaX. Journal of Physical Chemistry B, 2001, 105, 5883-5886.	2.6	11
134	Influence of Polymer Motion, Topology and Simulation Size on Penetrant Diffusion in Amorphous, Glassy Polymers:Â Diffusion of Helium in Polypropylene. Macromolecules, 2001, 34, 6107-6116.	4.8	35
135	Characterization and catalytic properties of MCM-56 and MCM-22 zeolites. Microporous and Mesoporous Materials, 2000, 40, 9-23.	4.4	136
136	Accessibility of lithium cations in high-silica zeolites investigated using the NMR paramagnetic shift effect of adsorbed oxygen. Microporous and Mesoporous Materials, 2000, 40, 25-34.	4.4	26
137	MCM-47:Â A Highly Crystalline Silicate Composed of Hydrogen-Bonded Ferrierite Layers. Chemistry of Materials, 2000, 12, 2936-2942.	6.7	98
138	Cation-induced transformation of boron-coordination in zeolites. Physical Chemistry Chemical Physics, 2000, 2, 3091-3098.	2.8	92
139	Multiple-Quantum1H MAS NMR Studies of Defect Sites in As-Made All-Silica ZSM-12 Zeolite. Journal of the American Chemical Society, 2000, 122, 6659-6663.	13.7	103
140	Synthesis, structure solution, and characterization of the aluminosilicate MCM-61: the first aluminosilicate clathrate with 18-membered rings. Microporous and Mesoporous Materials, 1999, 31, 61-73.	4.4	30
141	The role of barium cations in the synthesis of low-silica LTL zeolites. Microporous and Mesoporous Materials, 1999, 33, 97-113.	4.4	23
142	Mobility of Li cations in X zeolites studied by solid-state NMR spectroscopy. Solid State Ionics, 1999, 118, 135-139.	2.7	28
143	Framework modification of microporous silicates via gasâ€phase treatment with ZrCl4. Catalysis Letters, 1999, 62, 99-106.	2.6	27
144	Title is missing!. Topics in Catalysis, 1999, 9, 1-11.	2.8	34

#	Article	IF	CITATIONS
145	Guestâ^'Host Interactions in As-Made Al-ZSM-12:Â Implications for the Synthesis of Zeolite Catalysts. Journal of Physical Chemistry B, 1999, 103, 10858-10865.	2.6	51
146	2Hâ^'{H} CPMAS NMR of Guestâ^'Host Species in Zeolites:  An Experimental Study. Journal of Physical Chemistry B, 1999, 103, 5920-5927.	2.6	7
147	Solid-State Deuterium NMR Studies of Organic Molecules in the Tectosilicate Nonasil. Journal of Physical Chemistry B, 1998, 102, 2339-2349.	2.6	19
148	Spatial Ordering of Organic and Inorganic Charge Centers in As-Made High-Silica Zeolites Determined by Multidimensional {1H} â†'2H CPMAS NMR Correlation Spectroscopy. Chemistry of Materials, 1998, 10, 4015-4024.	6.7	27
149	Spatial Correlation of Charge Centers in the Tectosilicate Nonasil Determined by Multidimensional {1H} â†'2H CPMAS NMR Correlation Spectroscopy. Journal of the American Chemical Society, 1998, 120, 2482-2483.	13.7	12
150	Characterization of the Extra-Large-Pore Zeolite UTD-1. Journal of the American Chemical Society, 1997, 119, 8474-8484.	13.7	168
151	A Model for the Structure of the Large-Pore Zeolite SSZ-31. Journal of the American Chemical Society, 1997, 119, 3732-3744.	13.7	100
152	Synthesis and Rietveld Refinement of the Small-Pore Zeolite SSZ-16. Chemistry of Materials, 1996, 8, 2409-2411.	6.7	58
153	SiOcntdotcntdotcntdot.HOSi Hydrogen Bonds in As-Synthesized High-Silica Zeolites. The Journal of Physical Chemistry, 1995, 99, 12588-12596.	2.9	233
154	CIT-1: A New Molecular Sieve with Intersecting Pores Bounded by 10- and 12-Rings. Journal of the American Chemical Society, 1995, 117, 3766-3779.	13.7	136
155	Structure-Direction in Zeolite Synthesis. Topics in Inclusion Science, 1995, , 47-78.	0.5	25
156	Synthesis of (Alumino) Silicate Materials Using Organic Molecules and Self-Assembled Organic Aggregates as Structure-Directing Agents. Materials Research Society Symposia Proceedings, 1994, 346, 831.	0.1	28
157	Synthesis and characterization of pure-silica and boron-substituted SSZ-24 using N(16) methylsparteinium bromide as structure-directing agent. Microporous Materials, 1994, 3, 61-69.	1.6	61
158	Physicochemical Characterization of Zeolites SSZ-26 and SSZ-33. The Journal of Physical Chemistry, 1994, 98, 12040-12052.	2.9	70
159	Synthesis and Characterization of Zincosilicates with the SOD Topology. Chemistry of Materials, 1994, 6, 2193-2199.	6.7	42
160	SSZ-26 and SSZ-33: Two Molecular Sieves with Intersecting 10- and 12-Ring Pores. Science, 1993, 262, 1543-1546.	12.6	165
161	Zeolite and molecular sieve synthesis. Chemistry of Materials, 1992, 4, 756-768.	6.7	1,362