Feng Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9109/publications.pdf

Version: 2024-02-01

		687363	677142
57	580	13	22
papers	citations	h-index	g-index
			0.00
58	58	58	803
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	HfAlOx/Al2O3 Bilayer Dielectrics for a Field Effect Transistor on a Hydrogen-Terminated Diamond. Materials, 2022, 15, 446.	2.9	O
2	Flexible Perovskite Solar Cells with Enhanced Performance Based on a Void-Free Imbedded Interface via a Thin Layer of Mesoporous TiO ₂ . ACS Applied Energy Materials, 2022, 5, 2242-2251.	5.1	8
3	Oneâ€pot synthesis of ICG&Cur@ZIFâ€8 nanocomposites with pHâ€controlled drug delivery and good photothermal performance. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	1.2	5
4	Large <i>V</i> _{TH} of Normally-OFF Field Effect Transistor With Yttrium Gate Material Directly Deposited on Hydrogen-Terminated Diamond. IEEE Transactions on Electron Devices, 2022, 69, 3563-3567.	3.0	5
5	Mode-Coupling Induced Crosstalk Optimization in a Graded-Index Six-Mode Fiber. IEEE Photonics Journal, 2022, 14, 1-8.	2.0	2
6	Mechanism Analysis of Dynamic On-State Resistance Degradation for a Commercial GaN HEMT Using Double Pulse Test. Electronics (Switzerland), 2021, 10, 1202.	3.1	8
7	Temperature-Adaptive Ultralubricity of a WS ₂ /a-C Nanocomposite Coating: Performance from Room Temperature up to 500 °C. ACS Applied Materials & Interfaces, 2021, 13, 28843-28854.	8.0	17
8	The Investigation of Microstructure, Photocatalysis and Corrosion Resistance of C-Doped Ti–O Films Fabricated by Reactive Magnetron Sputtering Deposition with CO2 Gas. Coatings, 2021, 11, 881.	2.6	2
9	Transmission Performance and Noise Suppression in a Two-mode Fiber (TMF) Channel. , 2021, , .		2
10	On the adhesion and wear resistance of DLC films deposited on nitrile butadiene rubber: A Ti-C interlayer. Diamond and Related Materials, 2020, 101, 107563.	3.9	20
11	On the Selfâ€Repair of WS ₂ /a Tribocoating. Advanced Materials Interfaces, 2020, 7, 1900938.	3.7	6
12	Flat Power Response in a Polarization-Maintaining Coupler Based Nonlinear-Optical Loop Mirror (PMC-NOLM). , 2020, , .		0
13	Normally Off Hydrogen-Terminated Diamond Field-Effect Transistor With Ti/TiO _x Gate Materials. IEEE Transactions on Electron Devices, 2020, 67, 4784-4788.	3.0	28
14	Effect of titanium suboxide on the formation of anatase and rutile phases during annealing of C-Doped Ti–O thin film deposited by DC magnetron sputtering. Functional Materials Letters, 2020, 13, 2051021.	1.2	0
15	Nanocone Structures Enhancing Nitrogen-Vacancy Center Emissions in Diamonds. Coatings, 2020, 10, 513.	2.6	3
16	EFFECTS OF ANNEALING ON THE COMPOSITION, STRUCTURE AND PHOTOCATALYTIC PROPERTIES OF C-DOPED TITANIA FILMS DEPOSITED BY REACTIVE MAGNETRON SPUTTERING USING CO ₂ AS CARBON SOURCE. Surface Review and Letters, 2019, 26, 1950036.	1.1	7
17	Effect of sputtering pressure on the surface topography, structure, wettability and tribological performance of DLC films coated on rubber by magnetron sputtering. Surface and Coatings Technology, 2019, 365, 33-40.	4.8	29
18	Ohmic Contact of Pt/Au on Hydrogen-Terminated Single Crystal Diamond. Coatings, 2019, 9, 539.	2.6	6

#	Article	IF	CITATIONS
19	Effect of bias voltage on the tribological and sealing properties of rubber seals modified by DLC films. Surface and Coatings Technology, 2019, 360, 391-399.	4.8	18
20	Ultra-strong nanographite bulks based on a unique carbon nanotube linked graphite onions structure. Carbon, 2019, 149, 436-444.	10.3	12
21	On the S/W stoichiometry and triboperformance of WSxC(H) coatings deposited by magnetron sputtering. Surface and Coatings Technology, 2019, 365, 41-51.	4.8	20
22	A strategy to coat a wavy 3D film on glass surface for enhancing the interface adhesion. Materials Letters, 2018, 215, 305-307.	2.6	0
23	Instant WS2 platelets reorientation of self-adaptive WS2/a-C tribocoating. Materials Letters, 2018, 229, 64-67.	2.6	13
24	The influence of the hole transport layers on the performance of blue and color tunable quantum dot lightâ€emitting diodes. Journal of the Society for Information Display, 2018, 26, 470-476.	2.1	16
25	From understanding the formation mechanism to enhanced supercapacitor performance of VSB-5 with a hierarchical structure. Journal of Materials Chemistry A, 2017, 5, 16898-16906.	10.3	11
26	Investigation of Exciton Recombination Zone in Quantum Dot Light-Emitting Diodes Using a Fluorescent Probe. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27809-27816.	8.0	8
27	Carbon-Induced Generation of Hierarchical Structured Ni _{0.75} (OH) ₂ for Enhanced Supercapacitor Performance. ACS Applied Materials & Diverge 1. Supercapacitor Performance. ACS Applied Materials & Diverge 2. Supercapacitor Performance 2. Super	8.0	39
28	Multilevel Amplitude Regeneration of PAM-4 Signals using a Nonlinear Optical Loop Mirror., 2017,,.		0
29	All-optical multilevel regeneration in nonlinear optical loop mirror. , 2017, , .		1
30	Multilevel power transfer function characterization of nonlinear optical loop mirror., 2017,,.		11
31	FWM Dynamics Under Dual-Pump Thermal Behavior in Silicon Microring Resonator. IEEE Photonics Journal, 2015, 7, 1-7.	2.0	2
32	The study of composition and surface electron structure of nitrogen-doped DLC film prepared by PIII-D. Functional Materials Letters, 2015, 08, 1540015.	1.2	2
33	Mussel-Inspired One-Step Adherent Coating Rich in Amine Groups for Covalent Immobilization of Heparin: Hemocompatibility, Growth Behaviors of Vascular Cells, and Tissue Response. ACS Applied Materials & Amp; Interfaces, 2014, 6, 14608-14620.	8.0	115
34	Structure and composition study of carbon-doped titanium oxide film combined with first principles. Journal of Advanced Ceramics, 2014, 3, 49-55.	17.4	28
35	Carbon-Doped Titanium Oxide Films by DC Reactive Magnetron Sputtering Using CO2 and O2 as Reactive Gas. Acta Metallurgica Sinica (English Letters), 2014, 27, 239-244.	2.9	9
36	Removal of radiocobalt ions from aqueous solutions by natural halloysite nanotubes. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 431-438.	1.5	23

#	Article	IF	Citations
37	Research of composition and photocatalytic property of carbon-doped Ti-O films prepared by R-MS using CO2 gas resource. Nuclear Instruments & Methods in Physics Research B, 2013, 307, 381-384.	1.4	6
38	Research Advances of Element-Doped Nanocrystalline Titanium Dioxide Thin Films. Advanced Materials Research, 2012, 476-478, 1851-1854.	0.3	0
39	Four-Wave-Mixing-Based Multi-Channel 2R Regenerator with Dispersion Compensation. , 2012, , .		0
40	Synthesis, Characterization, and Gas-Sensing for Trimethylamine of Mesoporous Ni-Doped Indium Oxide. Advanced Materials Research, 2012, 476-478, 1264-1267.	0.3	0
41	Progress in Research of Corrosion and Protection by Sulfate-Reducing Bacteria. Procedia Environmental Sciences, 2011, 10, 1177-1182.	1.4	26
42	Preparation and comparison study of hydroxyapatite and Eu-hydroxyapatite. Frontiers of Materials Science in China, 2009, 3, 255-258.	0.5	5
43	Study on wettabilities and platelet adhesion behavior of C:H and C:N:H films prepared by DC-MFCVA. Applied Surface Science, 2008, 255, 469-472.	6.1	4
44	The Study of Surface Energy, Electrical Properties and Platelet Adhesion Behavior of a-C/a-CN Films Synthesized by PIII-D. Key Engineering Materials, 2007, 330-332, 573-576.	0.4	0
45	Studying Effects of Bias Voltage on Properties, Wettability and Platelet Adhered Behavior of DLC Films Prepared By DC-MFCVAD. Key Engineering Materials, 2007, 353-358, 2203-2206.	0.4	0
46	The Synthesis and Initial Studying Anticoagulant Property of O-Doped DLC Films by DC-MFCVAD. Key Engineering Materials, 2007, 330-332, 873-876.	0.4	0
47	Studies of the composition, mechanical and electrical properties of N-doped carbon films prepared by DC-MFCAD. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 324-327.	1.4	2
48	Platelet Adhesion Study and Characteristic of Hydrogenated Carbon Films Synthesized by PIII-D. Key Engineering Materials, 2005, 288-289, 323-326.	0.4	2
49	The study of composition, structure, mechanical properties and platelet adhesion of Ti–O/TiN gradient films prepared by metal plasma immersion ion implantation and deposition. Nuclear Instruments & Methods in Physics Research B, 2004, 222, 81-90.	1.4	6
50	Synthesis of nitrogen incorporated carbon films by plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2004, 186, 118-124.	4.8	31
51	Controlling synthesis of Ti–O/Ti–N gradient films by PIII. Surface and Coatings Technology, 2002, 156, 208-213.	4.8	6
52	On Studying Surface and Nanomechanical Properties of Ti-O Films by Alkali Treatment. Applied Mechanics and Materials, 0, 138-139, 821-825.	0.2	4
53	Effects of Negative Bias Voltage on Structure and Mechanical Properties of DLC Films Synthesized by FCVA Deposition. Advanced Materials Research, 0, 287-290, 2203-2206.	0.3	6
54	Preparation of TiO ₂ Films on Quartz Glass Plate and Its Study of Photocatalytic Properties in Ultrasound. Advanced Materials Research, 0, 284-286, 970-973.	0.3	2

FENG WEN

#	Article	IF	CITATIONS
55	Technical and Structure Study of Coprecipitation Method for Nano-Titanium Dioxide. Advanced Materials Research, 0, 418-420, 827-830.	0.3	0
56	Degradation of Methyl Orangle by Magnetic Metal Doped TiO ₂ Films in a Magnetic Field. Advanced Materials Research, 0, 622-623, 1730-1733.	0.3	0
57	Optimum Design of Reactive Sputtering Parameters on the Mechanical Property of C-Doped TiO ₂ Photocatalytic Films: CO ₂ as Carbon Source. Key Engineering Materials, 0, 807, 41-49.	0.4	4