Ulrich Schwaneberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9108940/publications.pdf

Version: 2024-02-01

351 papers

11,114 citations

54 h-index 78 g-index

379 all docs

379 docs citations

379 times ranked 7725 citing authors

#	Article	IF	CITATIONS
1	Laboratory evolution of cytochrome P450 BM-3 monooxygenase for organic cosolvents. Biotechnology and Bioengineering, 2004, 85, 351-358.	3.3	184
2	Advances in ultrahigh-throughput screening for directed enzyme evolution. Chemical Society Reviews, 2020, 49, 233-262.	38.1	182
3	Directed Evolution Empowered Redesign of Natural Proteins for the Sustainable Production of Chemicals and Pharmaceuticals. Angewandte Chemie - International Edition, 2019, 58, 36-40.	13.8	169
4	Directed Evolution of the Fatty-Acid Hydroxylase P450 BM-3 into an Indole-Hydroxylating Catalyst. Chemistry - A European Journal, 2000, 6, 1531-1536.	3.3	167
5	Advances in generating functional diversity for directed protein evolution. Current Opinion in Chemical Biology, 2009, 13, 19-25.	6.1	156
6	Directed Evolution of a Cytochrome P450 Monooxygenase for Alkane Oxidation. Advanced Synthesis and Catalysis, 2001, 343, 601-606.	4.3	148
7	A Continuous Spectrophotometric Assay for P450 BM-3, a Fatty Acid Hydroxylating Enzyme, and Its Mutant F87A. Analytical Biochemistry, 1999, 269, 359-366.	2.4	143
8	A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes. Journal of Biotechnology, 2001, 88, 167-171.	3.8	136
9	Protein engineering in bioelectrocatalysis. Current Opinion in Biotechnology, 2003, 14, 590-596.	6.6	132
10	A Statistical Analysis of Random Mutagenesis Methods Used for Directed Protein Evolution. Journal of Molecular Biology, 2006, 355, 858-871.	4.2	132
11	Sequence saturation mutagenesis (SeSaM): a novel method for directed evolution. Nucleic Acids Research, 2004, 32, 26e-26.	14.5	130
12	Directed evolution 2.0: improving and deciphering enzyme properties. Chemical Communications, 2015, 51, 9760-9772.	4.1	122
13	Reengineering CelA2 cellulase for hydrolysis in aqueous solutions of deep eutectic solvents and concentrated seawater. Green Chemistry, 2012, 14, 2719.	9.0	120
14	Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chemistry, 2009, 11, 957.	9.0	113
15	Asymmetric reduction of ketones with recombinant E. coli whole cells in neat substrates. Chemical Communications, 2011, 47, 12230.	4.1	111
16	Making glucose oxidase fit for biofuel cell applications by directed protein evolution. Biosensors and Bioelectronics, 2006, 21, 2046-2051.	10.1	109
17	Phosphorothioate-based ligase-independent gene cloning (PLICing): An enzyme-free and sequence-independent cloning method. Analytical Biochemistry, 2010, 406, 141-146.	2.4	109
18	Arginine deiminase, a potential anti-tumor drug. Cancer Letters, 2008, 261, 1-11.	7.2	105

#	Article	IF	CITATIONS
19	A nanocompartment system (Synthosome) designed for biotechnological applications. Journal of Biotechnology, 2006, 123, 50-59.	3.8	104
20	Challenges and advances in the field of self-assembled membranes. Chemical Society Reviews, 2013, 42, 6578.	38.1	96
21	Rational evolution of a medium chain-specific cytochrome P -450 BM-3 variant. BBA - Proteins and Proteomics, 2001, 1545, 114-121.	2.1	94
22	P450 in biotechnology: zinc driven ï‰-hydroxylation of p-nitrophenoxydodecanoic acid using P450 BM-3 F87A as a catalyst. Journal of Biotechnology, 2000, 84, 249-257.	3.8	92
23	The Diversity Challenge in Directed Protein Evolution. Combinatorial Chemistry and High Throughput Screening, 2006, 9, 271-288.	1.1	92
24	Biofunctional Microgelâ€Based Fertilizers for Controlled Foliar Delivery of Nutrients to Plants. Angewandte Chemie - International Edition, 2017, 56, 7380-7386.	13.8	89
25	Structural Insight into Enantioselective Inversion of an Alcohol Dehydrogenase Reveals a "Polar Gate―in Stereorecognition of Diaryl Ketones. Journal of the American Chemical Society, 2018, 140, 12645-12654.	13.7	87
26	OmniChange: The Sequence Independent Method for Simultaneous Site-Saturation of Five Codons. PLoS ONE, 2011, 6, e26222.	2.5	83
27	Advances in protease engineering for laundry detergents. New Biotechnology, 2015, 32, 629-634.	4.4	82
28	A rhodium complex-linked \hat{l}^2 -barrel protein as a hybrid biocatalyst for phenylacetylene polymerization. Chemical Communications, 2012, 48, 9756.	4.1	78
29	Regioselective <i>o</i> â€Hydroxylation of Monosubstituted Benzenes by P450 BM3. Angewandte Chemie - International Edition, 2013, 52, 8459-8462.	13.8	77
30	Cloning and characterization of a thermostable and halo-tolerant endoglucanase from Thermoanaerobacter tengcongensis MB4. Applied Microbiology and Biotechnology, 2011, 89, 315-326.	3.6	76
31	Directed Evolution of Oxygenases: Screening Systems, Success Stories and Challenges. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 197-217.	1.1	72
32	Increasing activity and thermal resistance of <i>Bacillus gibsonii</i> alkaline protease (BgAP) by directed evolution. Biotechnology and Bioengineering, 2013, 110, 711-720.	3.3	72
33	Targeting microplastic particles in the void of diluted suspensions. Environment International, 2019, 123, 428-435.	10.0	72
34	Stereoselective epoxidation of the last double bond of polyunsaturated fatty acids by human cytochromes P450. Journal of Lipid Research, 2010, 51, 1125-1133.	4.2	71
35	Cellulolytic RoboLector – towards an automated high-throughput screening platform for recombinant cellulase expression. Journal of Biological Engineering, 2017, 11, 1.	4.7	71
36	A Whole Cell <i>E. coli</i> Display Platform for Artificial Metalloenzymes: Poly(phenylacetylene) Production with a Rhodium–Nitrobindin Metalloprotein. ACS Catalysis, 2018, 8, 2611-2614.	11,2	71

#	Article	IF	Citations
37	Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. Journal of Biotechnology, 2011, 154, 46-53.	3.8	70
38	A Hybrid Ringâ€Opening Metathesis Polymerization Catalyst Based on an Engineered Variant of the βâ€Barrel Protein FhuA. Chemistry - A European Journal, 2013, 19, 13865-13871.	3.3	70
39	Laboratory evolution of P450 BM3 for mediated electron transfer yielding an activity-improved and reductase-independent variant. Protein Engineering, Design and Selection, 2007, 21, 29-35.	2.1	68
40	A Highly Active Biohybrid Catalyst for Olefin Metathesis in Water: Impact of a Hydrophobic Cavity in a β-Barrel Protein. ACS Catalysis, 2015, 5, 7519-7522.	11.2	68
41	Engineering Robust Cellulases for Tailored Lignocellulosic Degradation Cocktails. International Journal of Molecular Sciences, 2020, 21, 1589.	4.1	68
42	P450 monooxygenase in biotechnology. Journal of Chromatography A, 1999, 848, 149-159.	3.7	66
43	Direct Oxidation of Cycloalkanes to Cycloalkanones with Oxygen in Water. Angewandte Chemie - International Edition, 2013, 52, 2359-2363.	13.8	65
44	Directed evolution of a highly active Yersinia mollaretii phytase. Applied Microbiology and Biotechnology, 2012, 95, 405-418.	3.6	64
45	Directed laccase evolution for improved ionic liquid resistance. Green Chemistry, 2013, 15, 1348.	9.0	64
46	Towards the Evolution of Artificial Metalloenzymesâ€"A Protein Engineer's Perspective. Angewandte Chemie - International Edition, 2019, 58, 4454-4464.	13.8	64
47	Functionalized Nanocompartments (Synthosomes) with a Reductionâ€Triggered Release System. Angewandte Chemie - International Edition, 2008, 47, 7029-7031.	13.8	63
48	Directed evolution of glucose oxidase from Aspergillus niger for ferrocenemethanol-mediated electron transfer. Biotechnology Journal, 2007, 2, 241-248.	3.5	61
49	A Screening System for the Directed Evolution of Epoxygenases: Importance of Position 184 in P450 BM3 for Stereoselective Styrene Epoxidation. Angewandte Chemie - International Edition, 2006, 45, 5380-5383.	13.8	59
50	Steering directed protein evolution: strategies to manage combinatorial complexity of mutant libraries. Environmental Microbiology, 2007, 9, 2645-2659.	3.8	59
51	Protein Engineering – An Option for Enzymatic Biofuel Cell Design. Electroanalysis, 2010, 22, 765-775.	2.9	59
52	To get what we aim for–Âprogress in diversity generation methods. FEBS Journal, 2013, 280, 2961-2978.	4.7	59
53	PTEN-inhibition by zinc ions augments interleukin-2-mediated Akt phosphorylation. Metallomics, 2014, 6, 1277.	2.4	59
54	Machine learning-assisted enzyme engineering. Methods in Enzymology, 2020, 643, 281-315.	1.0	59

#	Article	IF	CITATIONS
55	A roadmap to directed enzyme evolution and screening systems for biotechnological applications. Biological Research, 2013, 46, 395-405.	3.4	57
56	Directed Evolution of a Bacterial Laccase (CueO) for Enzymatic Biofuel Cells. Angewandte Chemie - International Edition, 2019, 58, 4562-4565.	13.8	57
57	Computerâ€Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns. Chemistry - A European Journal, 2020, 26, 643-649.	3.3	57
58	Anchor peptides: A green and versatile method for polypropylene functionalization. Polymer, 2017, 116, 124-132.	3.8	55
59	An efficient transformation method for Bacillus subtilis DB104. Applied Microbiology and Biotechnology, 2012, 94, 487-493.	3.6	53
60	Enzyme Hydration Determines Resistance in Organic Cosolvents. ACS Catalysis, 2020, 10, 14847-14856.	11.2	53
61	COMPUTER-AIDED PROTEIN DIRECTED EVOLUTION: A REVIEW OF WEB SERVERS, DATABASES AND OTHER COMPUTATIONAL TOOLS FOR PROTEIN ENGINEERING. Computational and Structural Biotechnology Journal, 2012, 2, e201209008.	4.1	52
62	Multi-step biocatalytic depolymerization of lignin. Applied Microbiology and Biotechnology, 2017, 101, 6277-6287.	3.6	51
63	Directed Evolution of the Fatty-Acid Hydroxylase P450 BM-3 into an Indole-Hydroxylating Catalyst. Chemistry - A European Journal, 2000, 6, 1531-1536.	3.3	49
64	Sortase-Mediated Surface Functionalization of Stimuli-Responsive Microgels. Biomacromolecules, 2017, 18, 2789-2798.	5.4	49
65	A Flow Cytometry–Based Screening System for Directed Evolution of Proteases. Journal of Biomolecular Screening, 2011, 16, 285-294.	2.6	47
66	lonic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution. Applied Microbiology and Biotechnology, 2014, 98, 5775-5785.	3.6	47
67	In vitro flow cytometry-based screening platform for cellulase engineering. Scientific Reports, 2016, 6, 26128.	3.3	47
68	KnowVolution of the Polymer-Binding Peptide LCI for Improved Polypropylene Binding. Polymers, 2018, 10, 423.	4.5	47
69	Sensitive Assay for Laboratory Evolution of Hydroxylases toward Aromatic and Heterocyclic Compounds. Journal of Biomolecular Screening, 2005, 10, 246-252.	2.6	46
70	lonic liquid effects on the activity of monooxygenase P450 BM-3. Green Chemistry, 2008, 10, 117-123.	9.0	46
71	Reengineered glucose oxidase for amperometric glucose determination in diabetes analytics. Biosensors and Bioelectronics, 2013, 50, 84-90.	10.1	46
72	Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels. Biomacromolecules, 2016, 17, 3619-3631.	5.4	46

#	Article	IF	CITATIONS
73	Expression of the Zn2+-containing hydroxynitrile lyase from flax (Linum usitatissimum) in Pichia pastoris— utilization of the recombinant enzyme for enzymatic analysis and site-directed mutagenesis. Plant Science, 1998, 139, 19-27.	3.6	45
74	Cost-Effective Whole-Cell Assay for Laboratory Evolution of Hydroxylases in Escherichia coli. Journal of Biomolecular Screening, 2001, 6, 111-117.	2.6	45
75	A Fluorescent Hydrogel-Based Flow Cytometry High-Throughput Screening Platform for Hydrolytic Enzymes. Chemistry and Biology, 2014, 21, 1733-1742.	6.0	45
76	Towards Understanding Directed Evolution: More than Half of All Amino Acid Positions Contribute to Ionic Liquid Resistance of <i>Bacillus subtilis</i> Lipase A. ChemBioChem, 2015, 16, 937-945.	2.6	45
77	Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Scientific Reports, 2017, 7, 13346.	3.3	45
78	Disulfide Bond Engineering of an Endoglucanase from Penicillium verruculosum to Improve Its Thermostability. International Journal of Molecular Sciences, 2019, 20, 1602.	4.1	45
79	How to Engineer Organic Solvent Resistant Enzymes: Insights from Combined Molecular Dynamics and Directed Evolution Study. ChemCatChem, 2020, 12, 4073-4083.	3.7	45
80	Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance. Angewandte Chemie - International Edition, 2021, 60, 11448-11456.	13.8	45
81	Understanding a Mechanism of Organic Cosolvent Inactivation in Heme Monooxygenase P450 BM-3. Journal of the American Chemical Society, 2007, 129, 5786-5787.	13.7	44
82	Engineering of the E. coli Outer Membrane Protein FhuA to overcome the Hydrophobic Mismatch in Thick Polymeric Membranes. Journal of Nanobiotechnology, 2011, 9, 8.	9.1	44
83	Flow Cytometer-Based High-Throughput Screening System for Accelerated Directed Evolution of P450 Monooxygenases. ACS Catalysis, 2012, 2, 2724-2728.	11.2	44
84	Exploring the Protein Stability Landscape: <i>Bacillus subtilis</i> Lipase A as a Model for Detergent Tolerance. ChemBioChem, 2015, 16, 930-936.	2.6	44
85	Hybrid Ruthenium ROMP Catalysts Based on an Engineered Variant of βâ€Barrel Protein FhuA ΔCVF ^{tev} : Effect of Spacer Length. Chemistry - an Asian Journal, 2015, 10, 177-182.	3.3	44
86	Multi-site saturation by OmniChange yields a pH- and thermally improved phytase. Journal of Biotechnology, 2014, 170, 68-72.	3.8	43
87	Directed evolution of polypropylene and polystyrene binding peptides. Biotechnology and Bioengineering, 2018, 115, 321-330.	3.3	42
88	Modification of the fatty acid specificity of cytochrome P450 BM-3 from Bacillus megaterium by directed evolution: a validated assay. Journal of Molecular Catalysis B: Enzymatic, 2001, 15, 123-133.	1.8	41
89	Laboratory Evolution of P450 BM-3 for Mediated Electron Transfer. ChemBioChem, 2006, 7, 638-644.	2.6	41
90	Photophysics of the LOV-Based Fluorescent Protein Variant iLOV-Q489K Determined by Simulation and Experiment. Journal of Physical Chemistry B, 2016, 120, 3344-3352.	2.6	41

#	Article	IF	CITATIONS
91	Directed Evolution of P 450 BM 3 into a <i>p</i> à€Xylene Hydroxylase. ChemCatChem, 2012, 4, 771-77	33.7	40
92	Lessons from diversity of directed evolution experiments by an analysis of 3,000 mutations. Biotechnology and Bioengineering, 2014, 111, 2380-2389.	3.3	40
93	KnowVolution of a Fungal Laccase toward Alkaline pH. ChemBioChem, 2019, 20, 1458-1466.	2.6	40
94	Transversionâ€enriched sequence saturation mutagenesis (SeSaMâ€Tv ⁺): A random mutagenesis method with consecutive nucleotide exchanges that complements the bias of errorâ€prone PCR. Biotechnology Journal, 2008, 3, 74-82.	3.5	39
95	Surface charge engineering of a Bacillus gibsonii subtilisin protease. Applied Microbiology and Biotechnology, 2013, 97, 6793-6802.	3.6	39
96	QM/MM Calculations Revealing the Resting and Catalytic States in Zinc-Dependent Medium-Chain Dehydrogenases/Reductases. ACS Catalysis, 2015, 5, 3207-3215.	11.2	39
97	Cavity Size Engineering of a \hat{l}^2 -Barrel Protein Generates Efficient Biohybrid Catalysts for Olefin Metathesis. ACS Catalysis, 2018, 8, 3358-3364.	11.2	39
98	<i>In Vitro</i> Double Oxidation of <i>n</i> êHeptane with Direct Cofactor Regeneration. Advanced Synthesis and Catalysis, 2013, 355, 1787-1798.	4.3	38
99	A loop engineering strategy improves laccase lcc2 activity in ionic liquid and aqueous solution. Green Chemistry, 2018, 20, 2801-2812.	9.0	38
100	Membrane-Mimetic Dendrimersomes Engulf Living Bacteria via Endocytosis. Nano Letters, 2019, 19, 5732-5738.	9.1	38
101	How To Engineer Ionic Liquids Resistant Enzymes: Insights from Combined Molecular Dynamics and Directed Evolution Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 11293-11302.	6.7	38
102	Engineering and emerging applications of artificial metalloenzymes with whole cells. Nature Catalysis, 2021, 4, 814-827.	34.4	38
103	Casting epPCR (cepPCR): A simple random mutagenesis method to generate high quality mutant libraries. Biotechnology and Bioengineering, 2017, 114, 1921-1927.	3.3	36
104	Directed Evolution of an Antitumor Drug (Arginine Deiminase PpADI) for Increased Activity at Physiological pH. ChemBioChem, 2010, 11, 691-697.	2.6	35
105	Extending the substrate scope of a Baeyer–Villiger monooxygenase by multiple-site mutagenesis. Applied Microbiology and Biotechnology, 2014, 98, 4009-4020.	3.6	35
106	Functionalized nanocompartments (Synthosomes): Limitations and prospective applications in industrial biotechnology. Biotechnology Journal, 2006, 1, 795-805.	3.5	34
107	Mediated electron transfer with P450cin. Electrochemistry Communications, 2010, 12, 1547-1550.	4.7	34
108	Nanocompartments with a pH release system based on an engineered OmpF channel protein. Soft Matter, 2011, 7, 532-539.	2.7	34

#	Article	IF	CITATIONS
109	Polymersome surface decoration by an EGFP fusion protein employing Cecropin A as peptide "anchor― Journal of Biotechnology, 2012, 157, 31-37.	3.8	34
110	Are Directed Evolution Approaches Efficient in Exploring Nature's Potential to Stabilize a Lipase in Organic Cosolvents?. Catalysts, 2017, 7, 142.	3 . 5	34
111	Directed Evolution of Hyaluronic Acid Synthase from <i>Pasteurella multocida</i> towards Highâ€Molecularâ€Weight Hyaluronic Acid. ChemBioChem, 2018, 19, 1414-1423.	2.6	34
112	Cloning, expression, and characterization of a thermostable glucoamylase from Thermoanaerobacter tengcongensis MB4. Applied Microbiology and Biotechnology, 2010, 87, 225-233.	3.6	33
113	Design of an activity and stability improved carbonyl reductase from Candida parapsilosis. Journal of Biotechnology, 2013, 165, 52-62.	3.8	33
114	Benzylic hydroxylation of aromatic compounds by P450 BM3. Green Chemistry, 2013, 15, 2408.	9.0	33
115	Artificial Diels–Alderase based on the transmembrane protein FhuA. Beilstein Journal of Organic Chemistry, 2016, 12, 1314-1321.	2.2	33
116	MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project MIX-UP started January 2020. Environmental Sciences Europe, 2021, 33, 99.	5 . 5	33
117	Rhodiumâ€Complexâ€Linked Hybrid Biocatalyst: Stereoâ€Controlled Phenylacetylene Polymerization within an Engineered Protein Cavity. ChemCatChem, 2014, 6, 1229-1235.	3.7	32
118	Matterâ€ <i>tag</i> : A universal immobilization platform for enzymes on polymers, metals, and siliconâ€based materials. Biotechnology and Bioengineering, 2020, 117, 49-61.	3.3	32
119	Chemoenzymatic route to \hat{I}^2 -blockers via 3-hydroxy esters. Tetrahedron: Asymmetry, 1996, 7, 2017-2022.	1.8	31
120	A Competitive Flow Cytometry Screening System for Directed Evolution of Therapeutic Enzyme. ACS Synthetic Biology, 2015, 4, 768-775.	3.8	31
121	Water-Soluble Reactive Copolymers Based on Cyclic <i>N</i> -Vinylamides with Succinimide Side Groups for Bioconjugation with Proteins. Macromolecules, 2015, 48, 4256-4268.	4.8	31
122	A bifunctional dermaseptin–thanatin dipeptide functionalizes the crop surface for sustainable pest management. Green Chemistry, 2019, 21, 2316-2325.	9.0	31
123	Rapid and Oriented Immobilization of Laccases on Electrodes via a Methionine-Rich Peptide. ACS Catalysis, 2021, 11, 2445-2453.	11.2	31
124	Enzyme–Polyelectrolyte Complexes Boost the Catalytic Performance of Enzymes. ACS Catalysis, 2018, 8, 10876-10887.	11.2	30
125	A thermostable flavin-based fluorescent protein from Chloroflexus aggregans: a framework for ultra-high resolution structural studies. Photochemical and Photobiological Sciences, 2019, 18, 1793-1805.	2.9	30
126	A nanophosphor-based method for selective DNA recovery in Synthosomes. Biotechnology Journal, 2006, 1, 828-834.	3 . 5	29

#	Article	IF	Citations
127	Ultrahigh Throughput Screening System for Directed Glucose Oxidase Evolution in Yeast Cells. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 55-60.	1.1	29
128	Directed arginine deiminase evolution for efficient inhibition of arginine-auxotrophic melanomas. Applied Microbiology and Biotechnology, 2015, 99, 1237-1247.	3.6	29
129	Engineering Enhanced Pore Sizes Using FhuA Δ1-160 from <i>E. coli</i> Outer Membrane as Template. ACS Sensors, 2017, 2, 1619-1626.	7.8	29
130	KnowVolution of a GH5 Cellulase from <i>Penicillium verruculosum</i> to Improve Thermal Stability for Biomass Degradation. ACS Sustainable Chemistry and Engineering, 2020, 8, 12388-12399.	6.7	29
131	Challenges of the genetic code for exploring sequence space in directed protein evolution. Biocatalysis and Biotransformation, 2007, 25, 229-241.	2.0	28
132	SeSaMâ€Tvâ€II Generates a Protein Sequence Space that is Unobtainable by epPCR. ChemBioChem, 2011, 12, 1595-1601.	2.6	28
133	Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution. Applied Microbiology and Biotechnology, 2016, 100, 227-242.	3.6	28
134	An Enzymatic Route to αâ€Tocopherol Synthons: Aromatic Hydroxylation of Pseudocumene and Mesitylene with P450 BM3. Chemistry - A European Journal, 2017, 23, 17981-17991.	3.3	28
135	Biocatalyst Immobilization by Anchor Peptides on an Additively Manufacturable Material. Organic Process Research and Development, 2019, 23, 1852-1859.	2.7	28
136	CompassR Yields Highly Organicâ€Solventâ€Tolerant Enzymes through Recombination of Compatible Substitutions. Chemistry - A European Journal, 2021, 27, 2789-2797.	3.3	28
137	A Potential Antitumor Drug (Arginine Deiminase) Reengineered for Efficient Operation under Physiological Conditions. ChemBioChem, 2010, 11, 2294-2301.	2.6	27
138	Reengineered carbonyl reductase for reducing methyl-substituted cyclohexanones. Protein Engineering, Design and Selection, 2013, 26, 291-298.	2.1	27
139	Grafting PNIPAAm from \hat{I}^2 -barrel shaped transmembrane nanopores. Biomaterials, 2016, 107, 115-123.	11.4	27
140	Sortase-Mediated High-Throughput Screening Platform for Directed Enzyme Evolution. ACS Combinatorial Science, 2018, 20, 203-211.	3.8	27
141	Exploring the full natural diversity of single amino acid exchange reveals that 40–60% of BSLA positions improve organic solvents resistance. Bioresources and Bioprocessing, 2018, 5, .	4.2	27
142	Toward understanding the inactivation mechanism of monooxygenase P450 BM-3 by organic cosolvents: A molecular dynamics simulation study. Biopolymers, 2006, 83, 467-476.	2.4	26
143	Whole-cell double oxidation of n-heptane. Journal of Biotechnology, 2014, 191, 196-204.	3.8	26
144	Rapid and Robust Coating Method to Render Polydimethylsiloxane Surfaces Cell-Adhesive. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41091-41099.	8.0	26

#	Article	IF	Citations
145	Ultrahighâ€throughput screening system for directed polymer binding peptide evolution. Biotechnology and Bioengineering, 2019, 116, 1856-1867.	3.3	26
146	Chemoenzymatic cascade for stilbene production from cinnamic acid catalyzed by ferulic acid decarboxylase and an artificial metathease. Catalysis Science and Technology, 2019, 9, 5572-5576.	4.1	26
147	CompassR-guided recombination unlocks design principles to stabilize lipases in ILs with minimal experimental efforts. Green Chemistry, 2021, 23, 3474-3486.	9.0	26
148	Temperature effects on structure and dynamics of the psychrophilic protease subtilisin S41 and its thermostable mutants in solution. Protein Engineering, Design and Selection, 2011, 24, 533-544.	2.1	25
149	An electrochemical microtiter plate for parallel spectroelectrochemical measurements. Electrochimica Acta, 2013, 89, 98-105.	5.2	25
150	Reactive Copolymers Based on <i>N</i> -Vinyl Lactams with Pyridyl Disulfide Side Groups via RAFT Polymerization and Postmodification via Thiol–Disulfide Exchange Reaction. Macromolecules, 2016, 49, 7141-7154.	4.8	25
151	Directed sortase A evolution for efficient site-specific bioconjugations in organic co-solvents. Chemical Communications, 2018, 54, 11467-11470.	4.1	25
152	Critical effect of proline on thermostability of endoglucanase II from Penicillium verruculosum. Biochemical Engineering Journal, 2019, 152, 107395.	3.6	25
153	Depolymerization of Laccase-Oxidized Lignin in Aqueous Alkaline Solution at 37 \hat{A}° C. ACS Sustainable Chemistry and Engineering, 2019, 7, 11150-11156.	6.7	25
154	Stimuli-Responsive Poly(<i>N</i> -Vinyllactams) with Glycidyl Side Groups: Synthesis, Characterization, and Conjugation with Enzymes. Biomacromolecules, 2019, 20, 992-1006.	5.4	25
155	MicroGelzymes: pH-Independent Immobilization of Cytochrome P450 BM3 in Microgels. Biomacromolecules, 2020, 21, 5128-5138.	5.4	25
156	Vanadium bromoperoxidase-coupled fluorescent assay for flow cytometry sorting of glucose oxidase gene libraries in double emulsions. Analytical and Bioanalytical Chemistry, 2012, 404, 1439-1447.	3.7	24
157	Who's Who? Allocation of Carbonyl Reductase Isoenzymes from <i>Candida parapsilosis</i> by Combining Bio―and Computational Chemistry. ChemBioChem, 2012, 13, 803-809.	2.6	24
158	Engineered phytases for emerging biotechnological applications beyond animal feeding. Applied Microbiology and Biotechnology, 2019, 103, 6435-6448.	3.6	24
159	Phytase-Based Phosphorus Recovery Process for 20 Distinct Press Cakes. ACS Sustainable Chemistry and Engineering, 2020, 8, 3913-3921.	6.7	24
160	Kill&Repel Coatings: The Marriage of Antifouling and Bactericidal Properties to Mitigate and Treat Wound Infections. Advanced Functional Materials, 2022, 32, 2106656.	14.9	24
161	Structural and dynamic properties of cytochrome P450 BM-3 in pure water and in a dimethylsulfoxide/water mixture. Biopolymers, 2005, 78, 259-267.	2.4	23
162	Rapid evolution of arginine deiminase for improved anti-tumor activity. Applied Microbiology and Biotechnology, 2011, 90, 193-201.	3.6	23

#	Article	IF	CITATIONS
163	Electrochemical Oxidation of Glucose Using Mutant Glucose Oxidase from Directed Protein Evolution for Biosensor and Biofuel Cell Applications. Applied Biochemistry and Biotechnology, 2011, 165, 1448-1457.	2.9	23
164	The role of active-site Phe87 in modulating the organic co-solvent tolerance of cytochrome P450 BM3 monooxygenase. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1013-1017.	0.7	23
165	Phosphorothioate-based DNA recombination: an enzyme-free method for the combinatorial assembly of multiple DNA fragments. BioTechniques, 2012, 52, 1-6.	1.8	23
166	Coupling of electrochemical and optical measurements in a microtiter plate for the fast development of electro enzymatic processes with P450s. Journal of Molecular Catalysis B: Enzymatic, 2013, 92, 71-78.	1.8	23
167	Mediated electron transfer with monooxygenasesâ€"Insight in interactions between reduced mediators and the co-substrate oxygen. Journal of Molecular Catalysis B: Enzymatic, 2014, 108, 51-58.	1.8	23
168	Biocatalytic microgels ($\hat{1}\frac{4}{\text{-Gel}(i)}$ zymes $\frac{1}{2}$): synthesis, concepts, and emerging applications. Green Chemistry, 2020, 22, 8183-8209.	9.0	23
169	Biocatalytic hydroxylation of <i>n</i> -butane with in situ cofactor regeneration at low temperature and under normal pressure. Beilstein Journal of Organic Chemistry, 2012, 8, 186-191.	2.2	22
170	Ionic liquid activated <i>Bacillus subtilis</i> lipase A variants through cooperative surface substitutions. Biotechnology and Bioengineering, 2015, 112, 1997-2004.	3.3	22
171	Unraveling the effects of amino acid substitutions enhancing lipase resistance to an ionic liquid: a molecular dynamics study. Physical Chemistry Chemical Physics, 2018, 20, 9600-9609.	2.8	22
172	Loop engineering reveals the importance of active-site-decorating loops and gating residue in substrate affinity modulation of arginine deiminase (an anti-tumor enzyme). Biochemical and Biophysical Research Communications, 2018, 499, 233-238.	2.1	22
173	Selective Functionalization of Microgels with Enzymes by Sortagging. Bioconjugate Chemistry, 2019, 30, 2859-2869.	3.6	22
174	Sequence saturation mutagenesis with tunable mutation frequencies. Analytical Biochemistry, 2005, 341, 187-189.	2.4	21
175	Are transversion mutations better? A Mutagenesis Assistant Program analysis on P450 BM-3 heme domain. Biotechnology Journal, 2007, 2, 133-142.	3.5	21
176	Expression of Arginine Deiminase from Pseudomonas plecoglossicida CGMCC2039 in Escherichia coli and Its Anti-Tumor Activity. Current Microbiology, 2009, 58, 593-598.	2.2	21
177	First steps towards a Zn/Co(III)sep-driven P450 BM3 reactor. Applied Microbiology and Biotechnology, 2011, 91, 989-999.	3.6	21
178	First Insights on Organic Cosolvent Effects on FhuA Wildtype and FhuA Î"1-159. International Journal of Molecular Sciences, 2012, 13, 2459-2471.	4.1	21
179	Directed Evolution of Subtilisin E into a Highly Active and Guanidinium Chlorideâ€and Sodium Dodecylsulfateâ€Tolerant Protease. ChemBioChem, 2012, 13, 691-699.	2.6	21
180	P450 BM3 crystal structures reveal the role of the charged surface residue Lys/Arg184 in inversion of enantioselective styrene epoxidation. Chemical Communications, 2013, 49, 4694.	4.1	21

#	Article	IF	Citations
181	Insight into the redox partner interaction mechanism in cytochrome P450BMâ€3 using molecular dynamics simulations. Biopolymers, 2014, 101, 197-209.	2.4	21
182	Alcohol dehydrogenase stabilization by additives under industrially relevant reaction conditions. Journal of Molecular Catalysis B: Enzymatic, 2014, 103, 24-28.	1.8	21
183	Light-induced structural changes in a short light, oxygen, voltage (LOV) protein revealed by molecular dynamics simulations—implications for the understanding of LOV photoactivation. Frontiers in Molecular Biosciences, 2015, 2, 55.	3.5	21
184	Nano-thin walled micro-compartments from transmembrane protein–polymer conjugates. Soft Matter, 2017, 13, 2866-2875.	2.7	21
185	Systematically Scrutinizing the Impact of Substitution Sites on Thermostability and Detergent Tolerance for <i>Bacillus subtilis</i> Lipase A. Journal of Chemical Information and Modeling, 2020, 60, 1568-1584.	5.4	21
186	Chemogenetic Evolution of a Peroxidase-like Artificial Metalloenzyme. ACS Catalysis, 2021, 11, 5079-5087.	11.2	21
187	P-Link: A method for generating multicomponent cytochrome P450 fusions with variable linker length. BioTechniques, 2014, 57, 13-20.	1.8	20
188	CaLB Catalyzed Conversion of $\hat{l}\mu$ -Caprolactone in Aqueous Medium. Part 1: Immobilization of CaLB to Microgels. Polymers, 2016, 8, 372.	4.5	20
189	PyPEFâ€"An Integrated Framework for Data-Driven Protein Engineering. Journal of Chemical Information and Modeling, 2021, 61, 3463-3476.	5.4	20
190	Molecular understanding of sterically controlled compound release through an engineered channel protein (FhuA). Journal of Nanobiotechnology, 2010, 8, 14.	9.1	19
191	MAP ^{2.0} 3D: A Sequence/Structure Based Server for Protein Engineering. ACS Synthetic Biology, 2012, 1, 139-150.	3.8	19
192	Protein consensus-based surface engineering (ProCoS): a computer-assisted method for directed protein evolution. BioTechniques, 2016, 61, 305-314.	1.8	19
193	Directed evolution of P450cin for mediated electron transfer. Protein Engineering, Design and Selection, 2017, 30, 119-127.	2.1	19
194	Recent Advances in Directed Phytase Evolution and Rational Phytase Engineering., 2017,, 145-172.		19
195	Gerichtete Evolution ermöglicht das Design von maßgeschneiderten Proteinen zur nachhaltigen Produktion von Chemikalien und Pharmazeutika. Angewandte Chemie, 2019, 131, 36-41.	2.0	19
196	Effects of ionic liquids on the reaction kinetics of a laccase–mediator system. RSC Advances, 2014, 4, 17097-17104.	3.6	18
197	Protein Engineering of the Antitumor Enzyme PpADI for Improved Thermal Resistance. ChemBioChem, 2014, 15, 276-283.	2.6	18
198	A flow cytometer-based whole cell screening toolbox for directed hydrolase evolution through fluorescent hydrogels. Chemical Communications, 2015, 51, 8679-8682.	4.1	18

#	Article	IF	Citations
199	A first continuous 4-aminoantipyrine (4-AAP)-based screening system for directed esterase evolution. Applied Microbiology and Biotechnology, 2015, 99, 5237-5246.	3.6	18
200	Reversible Deactivation of Enzymes by Redoxâ€Responsive Nanogel Carriers. Macromolecular Rapid Communications, 2016, 37, 1765-1771.	3.9	18
201	KnowVolution Campaign of an Aryl Sulfotransferase Increases Activity toward Cellobiose. Chemistry - A European Journal, 2018, 24, 17117-17124.	3.3	18
202	Enzymeâ€Compatible Dynamic Nanoreactors from Electrostatically Bridged Likeâ€Charged Surfactants and Polyelectrolytes. Angewandte Chemie - International Edition, 2018, 57, 9402-9407.	13.8	18
203	Residue K556â€A Light Triggerable Gatekeeper to Sterically Control Translocation in FhuA. Advanced Engineering Materials, 2011, 13, B324.	3.5	17
204	2-Methyltetrahydrofuran and cyclopentylmethylether: Two green solvents for efficient purification of membrane proteins like FhuA. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 937, 13-17.	2.3	17
205	Activity prediction of substrates in NADH-dependent carbonyl reductase by docking requires catalytic constraints and charge parameterization of catalytic zinc environment. Journal of Computer-Aided Molecular Design, 2015, 29, 1057-1069.	2.9	17
206	Oneâ€Pot Twoâ€Step Chemoenzymatic Cascade for the Synthesis of a Bisâ€benzofuran Derivative. European Journal of Organic Chemistry, 2019, 2019, 6341-6346.	2.4	17
207	Biadhesive Peptides for Assembling Stainless Steel and Compound Loaded Micro ontainers. Macromolecular Bioscience, 2019, 19, e1900125.	4.1	17
208	Chiral separation of <scp>d</scp> / <scp>l</scp> -arginine with whole cells through an engineered FhuA nanochannel. Chemical Communications, 2019, 55, 5431-5434.	4.1	17
209	Directed evolution of VanR biosensor specificity in yeast. Biotechnology Notes, 2020, 1, 9-15.	1.2	17
210	Preparativeâ€Scale Production of Testosterone Metabolites by Human Liver Cytochrome P450 Enzyme 3A4. Advanced Synthesis and Catalysis, 2020, 362, 2725-2738.	4.3	17
211	The molecular basis of spectral tuning in blue- and red-shifted flavin-binding fluorescent proteins. Journal of Biological Chemistry, 2021, 296, 100662.	3.4	17
212	Polar Substitutions on the Surface of a Lipase Substantially Improve Tolerance in Organic Solvents. ChemSusChem, 2022, 15, .	6.8	17
213	A computational protocol to predict suitable redox mediators for substitution of NAD(P)H in P450 monooxygenases. Journal of Molecular Catalysis B: Enzymatic, 2013, 88, 47-51.	1.8	16
214	Combinatorial optimization of synthetic operons for the microbial production of p-coumaryl alcohol with Escherichia coli. Microbial Cell Factories, 2015, 14, 79.	4.0	16
215	An engineered outer membrane pore enables an efficient oxygenation of aromatics and terpenes. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 285-294.	1.8	16
216	A whole cell biocatalyst for double oxidation of cyclooctane. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1641-1646.	3.0	16

#	Article	IF	Citations
217	Olefin metathesis catalysts embedded in \hat{l}^2 -barrel proteins: creating artificial metalloproteins for olefin metathesis. Beilstein Journal of Organic Chemistry, 2018, 14, 2861-2871.	2.2	16
218	A hydroquinone-specific screening system for directed P450 evolution. Applied Microbiology and Biotechnology, 2018, 102, 9657-9667.	3.6	16
219	Turning a Killing Mechanism into an Adhesion and Antifouling Advantage. Advanced Materials Interfaces, 2019, 6, 1900847.	3.7	16
220	Anchor Peptide-Mediated Surface Immobilization of a Grubbs-Hoveyda-Type Catalyst for Ring-Opening Metathesis Polymerization. Bioconjugate Chemistry, 2019, 30, 714-720.	3.6	16
221	Conformational dynamics of active site loop in <i>Escherichia coli</i> phytase. Biopolymers, 2010, 93, 994-1002.	2.4	15
222	Directed OmniChange Evolution Converts P450 BM3 into an Alkyltrimethylammonium Hydroxylase. Chemistry - A European Journal, 2018, 24, 16865-16872.	3.3	15
223	Application cases of biological transformation in manufacturing technology. CIRP Journal of Manufacturing Science and Technology, 2020, 31, 68-77.	4. 5	15
224	How Does Surface Charge Engineering of <i>Bacillus subtilis</i> Lipase A Improve Ionic Liquid Resistance? Lessons Learned from Molecular Dynamics Simulations. ACS Sustainable Chemistry and Engineering, 2022, 10, 2689-2698.	6.7	15
225	High-Yield Synthesis of Enantiopure 1,2-Amino Alcohols from <scp>I</scp> -Phenylalanine via Linear and Divergent Enzymatic Cascades. Organic Process Research and Development, 2022, 26, 2085-2095.	2.7	15
226	Substrate thiophosphorylation by Arabidopsis mitogen-activated protein kinases. BMC Plant Biology, 2016, 16, 48.	3.6	14
227	Directed Evolution of P450 BM3 towards Functionalization of Aromatic O-Heterocycles. International Journal of Molecular Sciences, 2019, 20, 3353.	4.1	14
228	A robust bacterial assay for high-throughput screening of human 4-hydroxyphenylpyruvate dioxygenase inhibitors. Scientific Reports, 2019, 9, 14145.	3.3	14
229	Effects of Proline Substitutions on the Thermostable LOV Domain from Chloroflexus aggregans. Crystals, 2020, 10, 256.	2.2	14
230	Tunnel engineering for modulating the substrate preference in cytochrome P450Bs \hat{l}^2 HI. Bioresources and Bioprocessing, 2021, 8, .	4.2	14
231	Enzyme mimetic microgel coating for endogenous nitric oxide mediated inhibition of platelet activation. Journal of Colloid and Interface Science, 2021, 601, 604-616.	9.4	14
232	Aqueous ionic liquids redistribute local enzyme stability via long-range perturbation pathways. Computational and Structural Biotechnology Journal, 2021, 19, 4248-4264.	4.1	14
233	Investigation of Structural Determinants for the Substrate Specificity in the Zincâ€Dependent Alcohol Dehydrogenase CPCR2 from ⟨i⟩Candida parapsilosis⟨/i⟩. ChemBioChem, 2015, 16, 1512-1519.	2.6	13
234	How to engineer glucose oxidase for mediated electron transfer. Biotechnology and Bioengineering, 2018, 115, 2405-2415.	3.3	13

#	Article	IF	CITATIONS
235	In Situ Monitoring of Membrane Protein Insertion into Block Copolymer Vesicle Membranes and Their Spreading via Potential-Assisted Approach. ACS Applied Materials & Spreading via Potential-Assisted via Potential	8.0	13
236	Designed <i>Streptococcus pyogenes </i> Sortase A Accepts Branched Amines as Nucleophiles in Sortagging. Bioconjugate Chemistry, 2020, 31, 2476-2481.	3.6	13
237	Exploring the mineralization of hydrophobins at a liquid interface. Soft Matter, 2012, 8, 11343.	2.7	12
238	Conformational Dynamics of the FMN-Binding Reductase Domain of Monooxygenase P450BM-3. Journal of Chemical Theory and Computation, 2013, 9, 96-105.	5.3	12
239	Insights on activity and stability of subtilisin E towards guanidinium chloride and sodium dodecylsulfate. Journal of Biotechnology, 2014, 169, 87-94.	3.8	12
240	2-Methyl-2,4-pentanediol (MPD) boosts as detergent-substitute the performance of ß-barrel hybrid catalyst for phenylacetylene polymerization. Beilstein Journal of Organic Chemistry, 2017, 13, 1498-1506.	2.2	12
241	A robust protocol for directed aryl sulfotransferase evolution toward the carbohydrate building block GlcNAc. Biotechnology and Bioengineering, 2018, 115, 1106-1115.	3.3	12
242	Cyclotrimerization of phenylacetylene catalyzed by a cobalt half-sandwich complex embedded in an engineered variant of transmembrane protein FhuA. Organic and Biomolecular Chemistry, 2018, 16, 5452-5456.	2.8	12
243	Improved microscale cultivation of Pichia pastoris for clonal screening. Fungal Biology and Biotechnology, 2018, 5, 8.	5.1	12
244	Biohybrid catalysts for sequential one-pot reactions based on an engineered transmembrane protein. Catalysis Science and Technology, 2019, 9, 942-946.	4.1	12
245	Rational surface engineering of an arginine deiminase (an antitumor enzyme) for increased PEGylation efficiency. Biotechnology and Bioengineering, 2019, 116, 2156-2166.	3.3	12
246	Incorporation of a Cp*Rh(III)-dithiophosphate Cofactor with Latent Activity into a Protein Scaffold Generates a Biohybrid Catalyst Promoting C(sp $<$ sup $>$ 2 $<$ /sup $>$)â \in "H Bond Functionalization. Inorganic Chemistry, 2020, 59, 14457-14463.	4.0	12
247	The Sequence Saturation Mutagenesis (SeSaM) Method. Methods in Molecular Biology, 2014, 1179, 45-68.	0.9	12
248	Modulating the Coupling Efficiency of P450 BM3 by Controlling Water Diffusion through Access Tunnel Engineering. ChemSusChem, 2022, 15, .	6.8	12
249	FhuA deletion variant Î"1-159 overexpression in inclusion bodies and refolding with Polyethylene-Poly(ethylene glycol) diblock copolymer. Protein Expression and Purification, 2011, 77, 75-79.	1.3	11
250	Fluorescent Assay for Directed Evolution of Perhydrolases. Journal of Biomolecular Screening, 2012, 17, 796-805.	2.6	11
251	A Comparative Reengineering Study of cpADH5 through Iterative and Simultaneous Multisite Saturation Mutagenesis. ChemBioChem, 2018, 19, 1563-1569.	2.6	11
252	A colourimetric high-throughput screening system for directed evolution of prodigiosin ligase PigC. Chemical Communications, 2020, 56, 8631-8634.	4.1	11

#	Article	IF	CITATIONS
253	Enhancing Robustness of Sortase A by Loop Engineering and Backbone Cyclization. Chemistry - A European Journal, 2020, 26, 13568-13572.	3.3	11
254	Engineering of Laccase CueO for Improved Electron Transfer in Bioelectrocatalysis by Semiâ€Rational Design. Chemistry - A European Journal, 2020, 26, 4974-4979.	3.3	11
255	Sugar-Improved Enzymatic Synthesis of Biodiesel with <i>Yarrowia lipolytica</i> Lipase 2. Energy & Energy & Fuels, 2017, 31, 6248-6256.	5.1	10
256	Sortase-Mediated Ligation of Purely Artificial Building Blocks. Polymers, 2018, 10, 151.	4.5	10
257	Comparison of Candida antarctica Lipase B Variants for Conversion of Îμ-Caprolactone in Aqueous Medium—Part 2. Polymers, 2018, 10, 524.	4.5	10
258	A Semi-Rationally Engineered Bacterial Pyrrolysyl-tRNA Synthetase Genetically Encodes Phenyl Azide Chemistry. Biotechnology Journal, 2019, 14, 1800125.	3.5	10
259	Directed Evolution of a Cp*Rh ^{III} â€Linked Biohybrid Catalyst Based on a Screening Platform with Affinity Purification. ChemBioChem, 2021, 22, 679-685.	2.6	10
260	Understanding substrate binding and the role of gatekeeping residues in PigC access tunnels. Chemical Communications, 2021, 57, 2681-2684.	4.1	10
261	Anchor peptides promote degradation of mixed plastics for recycling. Methods in Enzymology, 2021, 648, 271-292.	1.0	10
262	A peptideâ€based coating toolbox to enable click chemistry on polymers, metals, and silicon through sortagging. Biotechnology and Bioengineering, 2021, 118, 1520-1530.	3.3	10
263	Rationalizing perhydrolase activity of aryl-esterase and subtilisin Carlsberg mutants by molecular dynamics simulations of the second tetrahedral intermediate state. Theoretical Chemistry Accounts, 2010, 125, 375-386.	1.4	9
264	dRTP and dPTP a complementary nucleotide couple for the Sequence Saturation Mutagenesis (SeSaM) method. Journal of Molecular Catalysis B: Enzymatic, 2012, 84, 40-47.	1.8	9
265	Increasing protein production by directed vector backbone evolution. AMB Express, 2013, 3, 39.	3.0	9
266	A High-Throughput Screening Method to Reengineer DNA Polymerases for Random Mutagenesis. Molecular Biotechnology, 2014, 56, 274-283.	2.4	9
267	What's My Substrate? Computational Function Assignment of <i>Candida parapsilosis</i> ADH5 by Genome Database Search, Virtual Screening, and QM/MM Calculations. Journal of Chemical Information and Modeling, 2016, 56, 1313-1323.	5.4	9
268	Screening through the PLICable promoter toolbox enhances protein production in <i>Escherichia coli</i> li>. Biotechnology Journal, 2016, 11, 1639-1647.	3.5	9
269	Consensus model of a cyanobacterial light-dependent protochlorophyllide oxidoreductase in its pigment-free apo-form and photoactive ternary complex. Communications Biology, 2019, 2, 351.	4.4	9
270	KnowVolution of prodigiosin ligase PigC towards condensation of short-chain prodiginines. Catalysis Science and Technology, 2021, 11, 2805-2815.	4.1	9

#	Article	IF	Citations
271	Endogenous Nitric Oxide-Releasing Microgel Coating Prevents Clot Formation on Oxygenator Fibers Exposed to In Vitro Blood Flow. Membranes, 2022, 12, 73.	3.0	9
272	MuteinDB: the mutein database linking substrates, products and enzymatic reactions directly with genetic variants of enzymes. Database: the Journal of Biological Databases and Curation, 2012, 2012, bas028-bas028.	3.0	8
273	Reengineering of subtilisin Carlsberg for oxidative resistance. Biological Chemistry, 2013, 394, 79-87.	2.5	8
274	Amino acid substitutions in random mutagenesis libraries: lessons from analyzing 3000 mutations. Applied Microbiology and Biotechnology, 2017, 101, 3177-3187.	3.6	8
275	Theoretical Model of the Protochlorophyllide Oxidoreductase from a Hierarchy of Protocols. Journal of Physical Chemistry B, 2018, 122, 7668-7681.	2.6	8
276	Directed evolution of an acid Yersinia mollaretii phytase for broadened activity at neutral pH. Applied Microbiology and Biotechnology, 2018, 102, 9607-9620.	3.6	8
277	Engineered P450 BM3 and cpADH5 coupled cascade reaction for \hat{l}^2 -oxo fatty acid methyl ester production in whole cells. Enzyme and Microbial Technology, 2020, 138, 109555.	3.2	8
278	Construction of a whole-cell biohybrid catalyst using a Cp*Rh(III)-dithiophosphate complex as a precursor of a metal cofactor. Journal of Inorganic Biochemistry, 2021, 216, 111352.	3.5	8
279	OmniChange: Simultaneous Site Saturation of Up to Five Codons. Methods in Molecular Biology, 2014, 1179, 139-149.	0.9	8
280	Structure and Cooperativity in Substrate–Enzyme Interactions: Perspectives on Enzyme Engineering and Inhibitor Design. ACS Chemical Biology, 2022, 17, 266-280.	3.4	8
281	A Filter Paper-Based Assay for Laboratory Evolution of Hydrolases and Dehydrogenases. Combinatorial Chemistry and High Throughput Screening, 2006, 9, 289-293.	1.1	7
282	A p-nitrothiophenolate screening system for the directed evolution of a two-component epoxygenase (StyAB). Journal of Molecular Catalysis B: Enzymatic, 2008, 50, 121-127.	1.8	7
283	Biofunktionale Mikrogelâ€basierte Dünger zur kontrollierten Blattdüngung mit Närstoffen auf Pflanzen. Angewandte Chemie, 2017, 129, 7486-7492.	2.0	7
284	Recombinant RNA Polymerase from <i>Geobacillus</i> sp. GHH01 as tool for rapid generation of metagenomic RNAs using in vitro technologies. Biotechnology and Bioengineering, 2017, 114, 2739-2752.	3.3	7
285	Directed Evolution of a Bacterial Laccase (CueO) for Enzymatic Biofuel Cells. Angewandte Chemie, 2019, 131, 4610-4613.	2.0	7
286	Directed aryl sulfotransferase evolution toward improved sulfation stoichiometry on the example of catechols. Applied Microbiology and Biotechnology, 2019, 103, 3761-3771.	3.6	7
287	Auf dem Weg zur Evolution artifizieller Metalloenzyme – aus einem Proteinâ€Engineeringâ€Blickwinkel. Angewandte Chemie, 2019, 131, 4500-4511.	2.0	7
288	A Photoclickâ€Based Highâ€Throughput Screening for the Directed Evolution of Decarboxylase OleT. Chemistry - A European Journal, 2021, 27, 954-958.	3.3	7

#	Article	IF	Citations
289	Natural Product Diversification by Oneâ€Step Biocatalysis using Human P450 3A4. ChemCatChem, 2022, 14,	3.7	7
290	Critical assessment of structure-based approaches to improve protein resistance in aqueous ionic liquids by enzyme-wide saturation mutagenesis. Computational and Structural Biotechnology Journal, 2022, 20, 399-409.	4.1	7
291	Redirecting catalysis from proteolysis to perhydrolysis in subtilisin Carlsberg. Journal of Biotechnology, 2013, 167, 279-286.	3.8	6
292	Engineering of Highly Selective Variants of <i>Parvibaculum lavamentivorans</i> Alcohol Dehydrogenase. ChemBioChem, 2014, 15, 2050-2052.	2.6	6
293	Unraveling Binding Effects of Cobalt(II) Sepulchrate with the Monooxygenase P450 BM-3 Heme Domain Using Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2016, 12, 353-363.	5.3	6
294	Inversion of cpADH5 Enantiopreference and Altered Chain Length Specificity for Methyl 3â∈Hydroxyalkanoates. Chemistry - A European Journal, 2017, 23, 12636-12645.	3.3	6
295	A 96-multiplex capillary electrophoresis screening platform for product based evolution of P450 BM3. Scientific Reports, 2019, 9, 15479.	3.3	6
296	Loop engineering of aryl sulfotransferase B for improving catalytic performance in regioselective sulfation. Catalysis Science and Technology, 2020, 10, 2369-2377.	4.1	6
297	An artificial ruthenium-containing β-barrel protein for alkene–alkyne coupling reaction. Organic and Biomolecular Chemistry, 2021, 19, 2912-2916.	2.8	6
298	Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance. Angewandte Chemie, 2021, 133, 11549-11557.	2.0	6
299	Unraveling the Mechanism and Kinetics of Binding of an LCIâ€eGFPâ€Polymer for Antifouling Coatings. Macromolecular Bioscience, 2021, 21, e2100158.	4.1	6
300	Can constraint network analysis guide the identification phase of KnowVolution? A case study on improved thermostability of an endo- \hat{l}^2 -glucanase. Computational and Structural Biotechnology Journal, 2021, 19, 743-751.	4.1	6
301	Whole-cell screening of oxidative enzymes using genetically encoded sensors. Chemical Science, 2021, 12, 14766-14772.	7.4	6
302	Recombination of Compatible Substitutions by 2GenReP and InSiReP. Methods in Molecular Biology, 2022, 2397, 71-81.	0.9	6
303	Reporter Immobilization Assay (REIA) for Bioconjugating Reactions. Bioconjugate Chemistry, 2016, 27, 1484-1492.	3.6	5
304	FhuA–Grubbs–Hoveyda Biohybrid Catalyst Embedded in a Polymer Film Enables Catalysis in Neat Substrates. ACS Catalysis, 2020, 10, 10946-10953.	11.2	5
305	Chemogenetic engineering of nitrobindin toward an artificial epoxygenase. Catalysis Science and Technology, 2021, 11, 4491-4499.	4.1	5
306	The Mutagenesis Assistant Program. Methods in Molecular Biology, 2014, 1179, 279-290.	0.9	5

#	Article	IF	Citations
307	A plea for the integration of Green Toxicology in sustainable bioeconomy strategies – Biosurfactants and microgel-based pesticide release systems as examples. Journal of Hazardous Materials, 2022, 426, 127800.	12.4	5
308	Conditioning of Feed Material Prior to Feeding: Approaches for a Sustainable Phosphorus Utilization. Sustainability, 2022, 14, 3998.	3.2	5
309	Evolution of E. coli Phytase Toward Improved Hydrolysis of Inositol Tetraphosphate. Frontiers in Chemical Engineering, 2022, 4, .	2.7	5
310	Combinatorial InVitroFlowâ€assisted mutagenesis (ComblMut) yields a 41â€fold improved CelA2 cellulase. Biotechnology and Bioengineering, 2022, , .	3.3	5
311	Fatty Acid Hydroxylations Using P450 Monooxygenases. , 2005, , 394-414.		4
312	Rhodium-Complex-Linked Hybrid Biocatalyst: Stereo-Controlled Phenylacetylene Polymerization within an Engineered Protein Cavity. ChemCatChem, 2014, 6, 1123-1123.	3.7	4
313	High-Throughput Screening Assays for Lipolytic Enzymes. Methods in Molecular Biology, 2018, 1685, 209-231.	0.9	4
314	Display of functional nucleic acid polymerase on Escherichia coli surface and its application in directed polymerase evolution. Biotechnology and Bioengineering, 2020, 117, 3699-3711.	3.3	4
315	Fe(iii)-complex mediated bacterial cell surface immobilization of eGFP and enzymes. Chemical Communications, 2021, 57, 4460-4463.	4.1	4
316	Generation of phytase chimeras with low sequence identities and improved thermal stability. Journal of Biotechnology, 2021, 339, 14-21.	3.8	4
317	Phytase blends for enhanced phosphorous mobilization of deoiled seeds. Enzyme and Microbial Technology, 2022, 153, 109953.	3.2	4
318	In Silico and Experimental ADAM17 Kinetic Modeling as Basis for Future Screening System for Modulators. International Journal of Molecular Sciences, 2022, 23, 1368.	4.1	4
319	Rational Design Yields Molecular Insights on Leaf-Binding of Anchor Peptides. ACS Applied Materials & Learney (Interfaces, 2022, 14, 28412-28426.	8.0	4
320	Using a bio-economic farm model to evaluate the economic potential and pesticide load reduction of the greenRelease technology. Agricultural Systems, 2022, 201, 103454.	6.1	4
321	Ternary Complex Formation and Photoactivation of a Photoenzyme Results in Altered Protein Dynamics. Journal of Physical Chemistry B, 2019, 123, 7372-7384.	2.6	3
322	Enhancing Robustness of Sortase A by Loop Engineering and Backbone Cyclization. Chemistry - A European Journal, 2020, 26, 13537-13537.	3.3	3
323	Expression and Refolding of the Plant Chitinase From Drosera capensis for Applications as a Sustainable and Integrated Pest Management. Frontiers in Bioengineering and Biotechnology, 2021, 9, 728501.	4.1	3
324	Directed Evolution of a Cytochrome P450 Monooxygenase for Alkane Oxidation. Advanced Synthesis and Catalysis, 2001, 343, 601-606.	4.3	3

#	Article	IF	CITATIONS
325	Protein Nanopore Membranes Prepared by a Simple Langmuir–Schaefer Approach. Small, 2021, 17, e2102975.	10.0	3
326	Insights on intermolecular FMN-heme domain interaction and the role of linker length in cytochrome P450cin fusion proteins. Biological Chemistry, 2020, 401, 1249-1255.	2.5	3
327	Using Molecular Simulation to Guide Protein Engineering for Biocatalysis in Organic Solvents. Methods in Molecular Biology, 2022, 2397, 179-202.	0.9	3
328	Optimized Hemolysin Type 1 Secretion System in Escherichia coli by Directed Evolution of the Hly Enhancer Fragment and Including a Terminator Region. ChemBioChem, 2022, , .	2.6	3
329	Novel technique for high throughput measurement of active monooxygenase concentration. Biotechnology and Bioengineering, 2017, 114, 929-933.	3.3	2
330	Reprint of: Application cases of biological transformation in manufacturing technology. CIRP Journal of Manufacturing Science and Technology, 2021, 34, 95-95.	4.5	2
331	Anchor peptides as innovative adjuvants reduce rain wash-off, but do not impair photosynthetic activity or cause oxidative damage in apple leaves. Acta Horticulturae, 2020, , 175-180.	0.2	2
332	BioAdhere: tailor-made bioadhesives for epiretinal visual prostheses. Biomaterials Science, 2022, 10, 3282-3295.	5.4	2
333	Structure protects function - An enabler for the functionalization of component surfaces by biohybrid coatings. Procedia CIRP, 2022, 110, 133-138.	1.9	2
334	Crystallographic insights into a cobalt (III) sepulchrate based alternative cofactor system of P450 BM3 monooxygenase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 134-140.	2.3	1
335	Enzymeâ€Compatible Dynamic Nanoreactors from Electrostatically Bridged Likeâ€Charged Surfactants and Polyelectrolytes. Angewandte Chemie, 2018, 130, 9546-9551.	2.0	1
336	High-throughput quantification of ochronotic pigment formation in Escherichia coli to evaluate the potency of human 4-hydroxyphenylpyruvate dioxygenase inhibitors in multi-well format. MethodsX, 2021, 8, 101181.	1.6	1
337	High Throughput Screening Method for Engineering P450 Towards Terminal Hydroxylation of Fatty Acids. Journal of Biobased Materials and Bioenergy, 2019, 13, 79-85.	0.3	1
338	Preparative Production of Functionalized (N- and O-Heterocyclic) Polycyclic Aromatic Hydrocarbons by Human Cytochrome P450 3A4 in a Bioreactor. Biomolecules, 2022, 12, 153.	4.0	1
339	Biochemie und Molekularbiologie 2008. Nachrichten Aus Der Chemie, 2009, 57, 278-286.	0.0	0
340	Development of a flow cytometer-based in vitro compartmentalization screening platform for directed protein evolution. New Biotechnology, 2014, 31, S149.	4.4	0
341	Lessons on directed evolution of hydrolases and glucose oxidase. New Biotechnology, 2014, 31, S20.	4.4	0
342	Selecting of a cytochrome P450cam SeSaM library with 3-chloroindole and endosulfan $\hat{a}\in$ "Identification of mutants that dehalogenate 3-chloroindole. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 68-79.	2.3	0

#	Article	IF	CITATIONS
343	Millionenfach beschleunigte Evolution für maβgeschneiderte Proteine. BioSpektrum, 2018, 24, 691-693.	0.0	O
344	Bestimmung der StabilitĤund EnantioselektivitĤvon Lipasen. BioSpektrum, 2018, 24, 156-159.	0.0	0
345	Activation of a Photoenzyme Results in Modified Structure and Dynamics. Biophysical Journal, 2020, 118, 192a-193a.	0.5	O
346	Engineering of Laccase CueO for Improved Electron Transfer in Bioelectrocatalysis by Semiâ€Rational Design. Chemistry - A European Journal, 2020, 26, 4884-4884.	3.3	0
347	FACS Based High Throughput Screening Systems for Gene Libraries in Double Emulsions. , 2012, , 51-57.		O
348	Protein Engineering for Electrochemical Applications. , 2014, , 1744-1748.		0
349	Structural insights of mediated electron transfer by P450 BM3 monooxygenase. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1169-C1169.	0.1	O
350	Identification of Stable and Enantioselective Lipases for Biotechnological Applications. Croatica Chemica Acta, 2018, 91, .	0.4	0
351	Development of a flow cytometer-based in vitro compartmentalization screening platform for directed protein evolution. New Biotechnology, 2014, 31, S149.	4.4	O