List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9108908/publications.pdf Version: 2024-02-01

VALEDIA DETRONULU

#	Article	IF	CITATIONS
1	The f subunit of human ATP synthase is essential for normal mitochondrial morphology and permeability transition. Cell Reports, 2021, 35, 109111.	2.9	22
2	Ablation of collagen VI leads to the release of platelets with altered function. Blood Advances, 2021, 5, 5150-5163.	2.5	5
3	The idebenone metabolite QS10 restores electron transfer in complex I and coenzyme Q defects. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 901-908.	0.5	31
4	Calcium and regulation of the mitochondrial permeability transition. Cell Calcium, 2018, 70, 56-63.	1.1	141
5	The unique histidine in OSCP subunit of Fâ€ATP synthase mediates inhibition of the permeability transition pore by acidic pH. EMBO Reports, 2018, 19, 257-268.	2.0	91
6	Pore formation by yeast mitochondrial ATP synthase involves subunits e, g and b. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e16-e17.	0.5	0
7	Effect of anions on Cyclophilin D binding to F-ATP synthase: Implications for the permeability transition pore. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e111-e112.	0.5	Ο
8	High-Conductance Channel Formation in Yeast Mitochondria is Mediated by F-ATP Synthase e and g Subunits. Cellular Physiology and Biochemistry, 2018, 50, 1840-1855.	1.1	57
9	A mitochondrial therapy for Duchenne muscular dystrophy. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e112.	0.5	Ο
10	Arginine 107 of yeast ATP synthase subunit g mediates sensitivity of the mitochondrial permeability transition to phenylglyoxal. Journal of Biological Chemistry, 2018, 293, 14632-14645.	1.6	40
11	Ca ²⁺ binding to Fâ€ATP synthase β subunit triggers the mitochondrial permeability transition. EMBO Reports, 2017, 18, 1065-1076.	2.0	170
12	Alisporivir rescues defective mitochondrial respiration in Duchenne muscular dystrophy. Pharmacological Research, 2017, 125, 122-131.	3.1	51
13	The Ca 2+ regulatory site of the permeability transition pore is within the catalytic core of F-ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e65-e66.	0.5	1
14	Melanocytes from Patients Affected by Ullrich Congenital Muscular Dystrophy and Bethlem Myopathy have Dysfunctional Mitochondria That Can be Rescued with Cyclophilin Inhibitors. Frontiers in Aging Neuroscience, 2014, 6, 324.	1.7	12
15	Modulation of F-ATP synthase by pH: Role of His112 protonation of OSCP. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, e12-e13.	0.5	Ο
16	FOF1-ATP Synthase Dimers and The Mitochondrial Permeability Transition Pore from Yeast to Mammals. Biophysical Journal, 2014, 106, 3a.	0.2	0
17	Peptide-based carbon nanotubes for mitochondrial targeting. Nanoscale, 2013, 5, 9110.	2.8	56
18	Dimers of mitochondrial ATP synthase form the permeability transition pore. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5887-5892.	3.3	822

#	Article	IF	CITATIONS
19	The effects of idebenone on mitochondrial bioenergetics. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 363-369.	0.5	107
20	A glutamine synthetase inhibitor increases survival and decreases cytokine response in a mouse model of acute liver failure. Liver International, 2011, 31, 1209-1221.	1.9	20
21	The translocator protein (peripheral benzodiazepine receptor) mediates rat-selective activation of the mitochondrial permeability transition by norbormide. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1600-1605.	0.5	14
22	Properties of Ca2+ Transport in Mitochondria of Drosophila melanogaster. Journal of Biological Chemistry, 2011, 286, 41163-41170.	1.6	53
23	Regulation of the Inner Membrane Mitochondrial Permeability Transition by the Outer Membrane Translocator Protein (Peripheral Benzodiazepine Receptor). Journal of Biological Chemistry, 2011, 286, 1046-1053.	1.6	94
24	Mitochondrial function and idebenone: A good therapy for Leber's hereditary optic neuropathy?. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 80.	0.5	0
25	A Ca2+-regulated mitochondrial (permeability transition) pore in Drosophila melanogaster. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 131.	0.5	0
26	The mitochondrial permeability transition from yeast to mammals. FEBS Letters, 2010, 584, 2504-2509.	1.3	114
27	Respiratory Complex I Dysfunction Due to Mitochondrial DNA Mutations Shifts the Voltage Threshold for Opening of the Permeability Transition Pore toward Resting Levels. Journal of Biological Chemistry, 2009, 284, 2045-2052.	1.6	91
28	Cyclophilin D Modulates Mitochondrial F0F1-ATP Synthase by Interacting with the Lateral Stalk of the Complex. Journal of Biological Chemistry, 2009, 284, 33982-33988.	1.6	262
29	Modulation of mitochondrial K+ permeability and reactive oxygen species production by the p13 protein of human T-cell leukemia virus type 1. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 947-954.	0.5	43
30	Switch from inhibition to activation of the mitochondrial permeability transition during hematoporphyrin-mediated photooxidative stress Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 897-904.	0.5	37
31	Respiratory Complex I Dysfunction Due to Mitochondrial DNA Mutations Shifts the Voltage Threshold for Opening of the Permeability Transition Pore toward Resting Levels. Biophysical Journal, 2009, 96, 529a.	0.2	0
32	S10.21 Quinones inhibit the mitochondrial permeability transition pore at two sites. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S63.	0.5	0
33	Enhancement of anxiety, facilitation of avoidance behavior, and occurrence of adult-onset obesity in mice lacking mitochondrial cyclophilin D. Neuroscience, 2008, 155, 585-596.	1.1	50
34	Phosphate Is Essential for Inhibition of the Mitochondrial Permeability Transition Pore by Cyclosporin A and by Cyclophilin D Ablation. Journal of Biological Chemistry, 2008, 283, 26307-26311.	1.6	146
35	Hexokinase II Detachment from Mitochondria Triggers Apoptosis through the Permeability Transition Pore Independent of Voltage-Dependent Anion Channels. PLoS ONE, 2008, 3, e1852.	1.1	249
36	Assessing the molecular basis for rat-selective induction of the mitochondrial permeability transition by norbormide. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 980-988.	0.5	7

#	Article	IF	CITATIONS
37	p66SHC promotes T cell apoptosis by inducing mitochondrial dysfunction and impaired Ca2+ homeostasis. Cell Death and Differentiation, 2007, 14, 338-347.	5.0	46
38	The mitochondrial permeability transition from in vitro artifact to disease target. FEBS Journal, 2006, 273, 2077-2099.	2.2	591
39	The Mitochondrial Effects of Small Organic Ligands of BCL-2. Journal of Biological Chemistry, 2006, 281, 10066-10072.	1.6	62
40	Properties of the Permeability Transition Pore in Mitochondria Devoid of Cyclophilin D. Journal of Biological Chemistry, 2005, 280, 18558-18561.	1.6	717
41	Discrimination between two steps in the mitochondrial permeability transition process. International Journal of Biochemistry and Cell Biology, 2005, 37, 1858-1868.	1.2	21
42	Species-specific modulation of the mitochondrial permeability transition by norbormide. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 178-186.	0.5	21
43	Arachidonic Acid Released by Phospholipase A2 Activation Triggers Ca2+-dependent Apoptosis through the Mitochondrial Pathway. Journal of Biological Chemistry, 2004, 279, 25219-25225.	1.6	151
44	Apoptosis to necrosis switching downstream of apoptosome formation requires inhibition of both glycolysis and oxidative phosphorylation in a BCL-XL- and PKB/AKT-independent fashion. Cell Death and Differentiation, 2004, 11, 342-353.	5.0	33
45	Induction of the mitochondrial permeability transition by the DNA alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine. Sorting cause and consequence of mitochondrial dysfunction. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1658, 58-63.	0.5	18
46	Overexpression of the stressâ€protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia. FASEB Journal, 2003, 17, 1-20.	0.2	112
47	Mitochondrial Alterations Induced by the p13II Protein of Human T-cell Leukemia Virus Type 1. Journal of Biological Chemistry, 2002, 277, 34424-34433.	1.6	65
48	Mitochondria Are Direct Targets of the Lipoxygenase Inhibitor MK886. Journal of Biological Chemistry, 2002, 277, 31789-31795.	1.6	53
49	Effects of fatty acids on mitochondria: implications for cell death. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1555, 160-165.	0.5	112
50	A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene, 2002, 21, 3872-3878.	2.6	410
51	A mitochondrial perspective on cell death. Trends in Biochemical Sciences, 2001, 26, 112-117.	3.7	396
52	The Mitochondrial Permeability Transition, Release of Cytochrome c and Cell Death. Journal of Biological Chemistry, 2001, 276, 12030-12034.	1.6	422
53	Arachidonic Acid Causes Cell Death through the Mitochondrial Permeability Transition. Journal of Biological Chemistry, 2001, 276, 12035-12040.	1.6	271
54	Arachidonic acid induces the mitochondrial permeability transition, cytochrome c release and apoptosis. European Journal of Anaesthesiology, 2000, 17, 14-16.	0.7	0

#	Article	IF	CITATIONS
55	Chloromethyltetramethylrosamine (Mitotracker OrangeTM) Induces the Mitochondrial Permeability Transition and Inhibits Respiratory Complex I. Journal of Biological Chemistry, 1999, 274, 24657-24663.	1.6	102
56	Commitment to Apoptosis by GD3 Ganglioside Depends on Opening of the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 1999, 274, 22581-22585.	1.6	150
57	Mitochondria and cell death. Mechanistic aspects and methodological issues. FEBS Journal, 1999, 264, 687-701.	0.2	650
58	Interactions of Chloromethyltetramethylrosamine (Mitotracker Orangetm) with Isolated Mitochondria and Intact Cells. Annals of the New York Academy of Sciences, 1999, 893, 391-395.	1.8	9
59	Chemical modification of the mitochondrial permeability transition pore by specific amino acid reagents. Drug Development Research, 1999, 46, 14-17.	1.4	1
60	Response to J. J. Lemasters et al Biophysical Journal, 1999, 77, 1749-1750.	0.2	2
61	Transient and Long-Lasting Openings of the Mitochondrial Permeability Transition Pore Can Be Monitored Directly in Intact Cells by Changes in Mitochondrial Calcein Fluorescence. Biophysical Journal, 1999, 76, 725-734.	0.2	628
62	Imaging the mitochondrial permeability transition pore in intact cells. BioFactors, 1998, 8, 263-272.	2.6	88
63	The mitochondrial permeability transition. BioFactors, 1998, 8, 273-281.	2.6	167
64	Reciprocal Relationships between the Resistance to Stresses and Cellular Aginga. Annals of the New York Academy of Sciences, 1998, 851, 450-465.	1.8	24
65	Perspectives on the mitochondrial permeability transition. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 200-206.	0.5	34
66	The role of mitochondria in the salvage and the injury of the ischemic myocardium. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1366, 69-78.	0.5	117
67	On the Voltage Dependence of the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 1997, 272, 12295-12299.	1.6	165
68	Inhibition of the mitochondrial cyclosporin A-sensitive permeability transition pore by the arginine reagent phenylglyoxal. FEBS Letters, 1997, 409, 361-364.	1.3	26
69	Two modes of activation of the permeability transition pore: The role of mitochondrial cyclophilin. Molecular and Cellular Biochemistry, 1997, 174, 181-184.	1.4	57
70	The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal. Journal of Bioenergetics and Biomembranes, 1996, 28, 131-138.	1.0	439
71	Modulation of the Mitochondrial Permeability Transition Pore by Pyridine Nucleotides and Dithiol Oxidation at Two Separate Sites. Journal of Biological Chemistry, 1996, 271, 6746-6751.	1.6	474
72	Interactions of Cyclophilin with the Mitochondrial Inner Membrane and Regulation of the Permeability Transition Pore, a Cyclosporin A-sensitive Channel. Journal of Biological Chemistry, 1996, 271, 2185-2192.	1.6	434

VALERIA PETRONILLI

#	Article	IF	CITATIONS
73	On the effects of paraquat on isolated mitochondria. Evidence that paraquat causes opening of the cyclosporin A-sensitive permeability transition pore synergistically with nitric oxide. Toxicology, 1995, 99, 77-88.	2.0	140
74	Selective inhibition of the mitochondrial permeability transition pore at the oxidation-reduction sensitive dithiol by monobromobimane. FEBS Letters, 1995, 362, 239-242.	1.3	85
75	Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 255-259.	0.5	193
76	A patch-clamp investigation of theStreptococcus faecalis cell membrane. Journal of Membrane Biology, 1993, 131, 203-218.	1.0	33
77	Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by matrix pH. Evidence that the pore open-closed probability is regulated by reversible histidine protonation. Biochemistry, 1993, 32, 4461-4465.	1.2	180
78	A patch-clamp study of Bacillus subtilis. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1112, 29-38.	1.4	35
79	Flow-force relationships during energy transfer between mitochondrial proton pumps. Biochimica Et Biophysica Acta - Bioenergetics, 1991, 1058, 297-303.	0.5	9
80	A characterization of cuprizone-induced giant mouse liver mitochondria. Journal of Bioenergetics and Biomembranes, 1990, 22, 663-677.	1.0	17
81	Cooperative mechanosensitive ion channels in Escherichia coli. Biochemical and Biophysical Research Communications, 1990, 171, 280-286.	1.0	19
82	Stretch-activated composite ion channels in Bacillus subtilis. Biochemical and Biophysical Research Communications, 1990, 168, 443-450.	1.0	53
83	The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. FEBS Letters, 1989, 259, 137-143.	1.3	208
84	Analysis of mechanisms of free-energy coupling and uncoupling by inhibitor titrations: Theory, computer modeling and experiments. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 932, 306-324.	0.5	17
85	Ion-conducting channels in a Gram-positive bacterium. FEBS Letters, 1988, 240, 105-109.	1.3	50
86	Analysis of Mechanisms of Free Energy Coupling and Uncoupling by Inhibitor Titrations. , 1988, , 213-219.		0
87	ATP synthase-mediated proton fluxes and phosphorylation in rat liver mitochondria: Dependence on Δ̃gmH. Biochimica Et Biophysica Acta - Bioenergetics, 1986, 851, 123-135.	0.5	10
88	Free energy coupling between H+-generating and H+-consuming pumps. Ratio between output and input forces. FEBS Journal, 1986, 155, 423-431.	0.2	22
89	The stoichiometry of H+ pumping in cytochrome oxidase and the mechanism of uncoupling. Journal of Inorganic Biochemistry, 1985, 23, 349-356.	1.5	17
90	Multiple relationships between rate of oxidative phosphorylation and Δµ̃ H in rat liver mitochondria. FEBS Letters, 1985, 193, 276-282.	1.3	29

#	Article	IF	CITATIONS
91	Nigericin-induced transient changes in rat-liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 767, 231-239.	0.5	28
92	â€~Cross-talk' between redox- and ATP-driven H+ pumps. Biochemical Society Transactions, 1984, 12, 414-416.	1.6	21