Sergey Kosourov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9108480/publications.pdf

Version: 2024-02-01

39 papers 2,431 citations

218592 26 h-index 3777752 34 g-index

41 all docs

41 docs citations

times ranked

41

1511 citing authors

#	Article	IF	Citations
1	Electrospinning of Electroconductive Water-Resistant Nanofibers of PEDOT–PSS, Cellulose Nanofibrils and PEO: Fabrication, Characterization, and Cytocompatibility. ACS Applied Bio Materials, 2021, 4, 483-493.	2.3	17
2	Photosynthetic hydrogen production: Novel protocols, promising engineering approaches and application of semiâ€synthetic hydrogenases. Physiologia Plantarum, 2021, 173, 555-567.	2.6	22
3	Nanocellulose-based mechanically stable immobilization matrix for enhanced ethylene production: a framework for photosynthetic solid-state cell factories. Green Chemistry, 2021, 23, 3715-3724.	4.6	15
4	Water oxidation by photosystem II is the primary source of electrons for sustained H ₂ photoproduction in nutrient-replete green algae. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29629-29636.	3.3	27
5	Towards sustainable ethylene production with cyanobacterial artificial biofilms. Green Chemistry, 2020, 22, 6404-6414.	4.6	33
6	Hydrogen Photoproduction in Green Algae: Novel Insights and Future Perspectives., 2020,, 237-253.		1
7	Acclimation responses of immobilized N2-fixing heterocystous cyanobacteria to long-term H2 photoproduction conditions: carbon allocation, oxidative stress and carotenoid production. Journal of Applied Phycology, 2019, 31, 131-143.	1.5	O
8	Immobilized heterocysts as microbial factories for sustainable nitrogen fixation. Journal of Biotechnology, 2019, 306, 100016.	1.9	7
9	Elimination of the flavodiiron electron sink facilitates long-term H2 photoproduction in green algae. Biotechnology for Biofuels, 2019, 12, 280.	6.2	34
10	A new approach for sustained and efficient H ₂ photoproduction by <i>Chlamydomonas reinhardtii</i> . Energy and Environmental Science, 2018, 11, 1431-1436.	15.6	74
11	Versatile templates from cellulose nanofibrils for photosynthetic microbial biofuel production. Journal of Materials Chemistry A, 2018, 6, 5825-5835.	5.2	34
12	CHAPTER 15. Immobilization of Microalgae as a Tool for Efficient Light Utilization in H2 Production and Other Biotechnology Applications. Comprehensive Series in Photochemical and Photobiological Sciences, 2018, , 355-384.	0.3	8
13	Evaluation of light energy to H 2 energy conversion efficiency in thin films of cyanobacteria and green alga under photoautotrophic conditions. Algal Research, 2017, 28, 253-263.	2.4	61
14	Carotenoid Biosynthesis in in Calothrix in Sp. 336/3: Composition of Carotenoids on Full Medium, During Diazotrophic Growth and After Long-Term H ₂ Photoproduction. Plant and Cell Physiology, 2016, 57, 2269-2282.	1.5	18
15	<i>Chlamydomonas</i> Flavodiiron Proteins Facilitate Acclimation to Anoxia During Sulfur Deprivation. Plant and Cell Physiology, 2015, 56, 1598-1607.	1.5	34
16	Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium <i>Anabaena</i> sp. PCC 7120. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11205-11210.	3.3	55
17	Recent Developments on Cyanobacteria and Green Algae for Biohydrogen Photoproduction and Its Importance in CO2 Reduction., 2014, , 367-387.		18
18	Immobilization of Photosynthetic Microorganisms for Efficient Hydrogen Production. Advances in Photosynthesis and Respiration, 2014, , 321-347.	1.0	17

#	Article	IF	Citations
19	Hydrogen Photoproduction by Immobilized N ₂ -Fixing Cyanobacteria: Understanding the Role of the Uptake Hydrogenase in the Long-Term Process. Applied and Environmental Microbiology, 2014, 80, 5807-5817.	1.4	31
20	A versatile method for preparation of hydrated microbial–latex biocatalytic coatings for gas absorption and gas evolution. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 1269-1278.	1.4	27
21	Extended H2 photoproduction by N2-fixing cyanobacteria immobilized in thin alginate films. International Journal of Hydrogen Energy, 2012, 37, 151-161.	3.8	56
22	Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures. International Journal of Hydrogen Energy, 2012, 37, 8834-8839.	3.8	73
23	Maximizing the hydrogen photoproduction yields in Chlamydomonas reinhardtii cultures: The effect of the H2 partial pressure. International Journal of Hydrogen Energy, 2012, 37, 8850-8858.	3.8	57
24	A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. International Journal of Hydrogen Energy, 2011, 36, 2044-2048.	3.8	102
25	Hydrogen photoproduction by nutrientâ€deprived <i>Chlamydomonas reinhardtii</i> cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnology and Bioengineering, 2009, 102, 50-58.	1.7	167
26	Hydrogen production by photoautotrophic sulfur-deprivedChlamydomonas reinhardtiipre-grown and incubated under high light. Biotechnology and Bioengineering, 2009, 102, 1055-1061.	1.7	41
27	Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. Journal of Biotechnology, 2009, 142, 21-30.	1.9	70
28	Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. Journal of Biotechnology, 2008, 134, 275-7.	1.9	85
29	A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. Journal of Biotechnology, 2007, 128, 776-787.	1.9	137
30	Photoproduction of hydrogen by sulfur-deprived C. reinhardtii mutants with impaired Photosystem II photochemical activity. Photosynthesis Research, 2007, 94, 79-89.	1.6	68
31	Development of Algal Systems for Hydrogen Photoproduction: Addressing the Hydrogenase Oxygen-sensitivity Problem., 2006,, 211-227.		5
32	Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. International Journal of Hydrogen Energy, 2006, 31, 1574-1584.	3.8	140
33	Continuous Hydrogen Photoproduction by <i>Chlamydomonas reinhardtii</i> : Using a Novel Two-Stage, Sulfate-Limited Chemostat System. Applied Biochemistry and Biotechnology, 2005, 121, 0403-0412.	1.4	96
34	The Effect of Sulfur Re-Addition on H2 Photoproduction by Sulfur-Deprived Green Algae. Photosynthesis Research, 2005, 85, 295-305.	1.6	77
35	Continuous Hydrogen Photoproduction by Chlamydomonas reinhardtii. , 2005, , 403-412.		5
36	Effects of Extracellular pH on the Metabolic Pathways in Sulfur-Deprived, H2-Producing Chlamydomonas reinhardtii Cultures. Plant and Cell Physiology, 2003, 44, 146-155.	1.5	232

SERGEY KOSOUROV

#	Article	IF	CITATIONS
37	Sustained hydrogen photoproduction byChlamydomonas reinhardtii: Effects of culture parameters. Biotechnology and Bioengineering, 2002, 78, 731-740.	1.7	268
38	Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnology and Bioengineering, 2002, 80, 777-783.	1.7	108
39	Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures. International Journal of Hydrogen Energy, 2002, 27, 1239-1244.	3.8	111