Vincenzo Venditto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9108396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photocatalytic degradation of atrazine under visible light using Gd-doped ZnO prepared by supercritical antisolvent precipitation route. Catalysis Today, 2022, 397-399, 240-248.	2.2	16
2	Polydopamine-Coated Poly-Lactic Acid Aerogels as Scaffolds for Tissue Engineering Applications. Molecules, 2022, 27, 2137.	1.7	7
3	Nanoporous–Crystalline Poly(2,6-dimethyl-1,4-phenylene)oxide Aerogels with Selectively Sulfonated Amorphous Phase for Fast VOC Sorption from Water. Materials, 2022, 15, 1947.	1.3	3
4	New fluorescence labeling isotactic polypropylenes as a tracer: a proof of concept. Polymer Chemistry, 2022, 13, 2685-2693.	1.9	5
5	Density Functional Theory Study and Photocatalytic Activity of ZnO/N-Doped TiO ₂ Heterojunctions. Journal of Physical Chemistry C, 2022, 126, 7000-7011.	1.5	31
6	Photocatalytic degradation of atrazine by an N-doped TiO2/polymer composite: catalytic efficiency and toxicity evaluation. Journal of Environmental Chemical Engineering, 2022, 10, 108167.	3.3	12
7	Tailoring novel polymer/UTSA-16 hybrid aerogels for efficient CH4/CO2 separation. Microporous and Mesoporous Materials, 2022, 341, 112106.	2.2	5
8	Stereogradient Poly(Lactic Acid) from <i>meso</i> ‣actide/L‣actide Mixtures. Angewandte Chemie - International Edition, 2022, 61, .	7.2	4
9	Hirudo verbana as a freshwater invertebrate model to assess the effects of polypropylene micro and nanoplastics dispersion in freshwater. Fish and Shellfish Immunology, 2022, 127, 492-507.	1.6	5
10	Photocatalytic Degradation of Thiacloprid Using Tri-Doped TiO2 Photocatalysts: A Preliminary Comparative Study. Catalysts, 2021, 11, 927.	1.6	10
11	Copolymerization of L-Lactide and ε-Caprolactone promoted by zinc complexes with phosphorus based ligands. Heliyon, 2021, 7, e07630.	1.4	7
12	Catalytic system based on recyclable FeO and ZnS semiconductor for UV-promoted degradation of chlorinated organic compounds. Separation and Purification Technology, 2021, 270, 118830.	3.9	9
13	Visible light active Fe-Pr co-doped TiO2 for water pollutants degradation. Catalysis Today, 2021, 380, 93-104.	2.2	42
14	Catalytic Composite Systems Based on N-Doped TiO2/Polymeric Materials for Visible-Light-Driven Pollutant Degradation: A Mini Review. Photochem, 2021, 1, 330-344.	1.3	4
15	Nanoporous polymeric aerogels–based structured photocatalysts for the removal of organic pollutant from water under visible or solar light. , 2020, , 99-120.		3
16	Aluminium complexes of salanol ligands: coordination chemistry and stereoselective lactide polymerization. Chemical Communications, 2020, 56, 13528-13531.	2.2	12
17	Isoselective Polymerization of <i>rac</i> â€Lactide by Highly Active Sequential {ONNN} Magnesium Complexes. Chemistry - A European Journal, 2020, 26, 17183-17189.	1.7	23
18	One-Step Catalytic or Photocatalytic Oxidation of Benzene to Phenol: Possible Alternative Routes for Phenol Synthesis?. Catalysts, 2020, 10, 1424.	1.6	33

#	Article	IF	CITATIONS
19	The Dualâ€Stereocontrol Mechanism: Heteroselective Polymerization of rac â€Lactide and Syndioselective Polymerization of meso â€Lactide by Chiral Aluminum Salan Catalysts. Angewandte Chemie, 2019, 131, 14821-14827.	1.6	9
20	The Dualâ€Stereocontrol Mechanism: Heteroselective Polymerization of rac â€Lactide and Syndioselective Polymerization of meso â€Lactide by Chiral Aluminum Salan Catalysts. Angewandte Chemie - International Edition, 2019, 58, 14679-14685.	7.2	47
21	Stereoselective Ring-Opening (Co)polymerization of β-Butyrolactone and ε-Decalactone Using an Yttrium Bis(phenolate) Catalytic System. Frontiers in Chemistry, 2019, 7, 301.	1.8	10
22	Polymerization of rac ‣actide Using Achiral Iron Complexes: Access to Thermally Stable Stereocomplexes. Angewandte Chemie, 2019, 131, 12715-12719.	1.6	7
23	Polymerization of rac ‣actide Using Achiral Iron Complexes: Access to Thermally Stable Stereocomplexes. Angewandte Chemie - International Edition, 2019, 58, 12585-12589.	7.2	47
24	Experimental and theoretical assignments of stereoregular poly(N-pentenylcarbazole) FT-IR spectra. Vibrational Spectroscopy, 2019, 101, 64-70.	1.2	2
25	Highly Robust and Selective System for Water Pollutants Removal: How to Transform a Traditional Photocatalyst into a Highly Robust and Selective System for Water Pollutants Removal. Nanomaterials, 2019, 9, 1509.	1.9	22
26	Removal of phenol in aqueous media by N-doped TiO2 based photocatalytic aerogels. Materials Science in Semiconductor Processing, 2018, 80, 104-110.	1.9	40
27	Block–Stereoblock Copolymers of Poly(<i>ïµ</i> â€Caprolactone) and Poly(Lactic Acid). Angewandte Chemie - International Edition, 2018, 57, 7191-7195.	7.2	46
28	Packaging technology for improving shelfâ€life of fruits based on a nanoporous–crystalline polymer. Journal of Applied Polymer Science, 2018, 135, 46256.	1.3	12
29	Block–Stereoblock Copolymers of Poly(<i>ïµ</i> aprolactone) and Poly(Lactic Acid). Angewandte Chemie, 2018, 130, 7309-7313.	1.6	25
30	Optoeletronic properties of poly(<i>N</i> â€alkenylâ€carbazole)s driven by polymer stereoregularity. Journal of Polymer Science Part A, 2018, 56, 242-251.	2.5	20
31	Stereoregular polymers with pendant carbazolyl groups: Synthesis, properties and optoelectronic applications. Synthetic Metals, 2018, 246, 185-194.	2.1	12
32	Copolymerization of cyclic esters, epoxides and anhydrides: evidence of the dual role of the monomers in the reaction mixture. Catalysis Science and Technology, 2018, 8, 5034-5043.	2.1	39
33	Influence of aggregate size on photoactivity of N-doped TiO2 particles in aqueous suspensions under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 336, 191-197.	2.0	22
34	Synthesis of poly(4-(N-carbazolyl)methyl styrene)s: Tailoring optical properties through stereoregularity. European Polymer Journal, 2017, 88, 246-256.	2.6	22
35	Groupâ€4 Metal Complexes of Phenylene–Salalen Ligands in <i>rac</i> ‣actide Polymerization Giving High Molecular Weight Stereoblock Poly(lactic acid). Chemistry - A European Journal, 2017, 23, 11540-11548.	1.7	33
36	Study of the electroluminescence of highly stereoregular poly(N-pentenyl-carbazole) for blue and white OLEDs. Semiconductor Science and Technology, 2017, 32, 065006.	1.0	23

#	Article	IF	CITATIONS
37	Divergent [{ONNN}Mg–Cl] complexes in highly active and living lactide polymerization. Chemical Science, 2017, 8, 5476-5481.	3.7	31
38	Potential contact and intraocular lenses based on hydrophilic/hydrophobic sulfonated syndiotactic polystyrene membranes. Journal of King Saud University - Science, 2017, 29, 487-493.	1.6	4
39	Groupâ€4 Metal Complexes of Phenylene-Salalen Ligands in rac -Lactide Polymerization Giving High Molecular Weight Stereoblock Poly(lactic acid). Chemistry - A European Journal, 2017, 23, 11454-11454.	1.7	1
40	Highly Isotactic Poly(N-butenyl-carbazole): Synthesis, Characterization, and Optical Properties. Journal of Chemistry, 2016, 2016, 1-8.	0.9	13
41	Tailor-Made Stereoblock Copolymers of Poly(lactic acid) by a Truly Living Polymerization Catalyst. Journal of the American Chemical Society, 2016, 138, 12041-12044.	6.6	71
42	Nanoporous Semicrystalline Syndiotactic Polystyrene with Sulfonated Amorphous Phase, for a Fast and Efficient Removal of VOC Pollutant Traces From Water. Macromolecular Symposia, 2016, 359, 16-23.	0.4	1
43	Nanoporous-crystalline poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) aerogels. Polymer, 2016, 105, 96-103.	1.8	36
44	Synthesis, characterization, and use as emissive layer of white organic light emitting diodes of the highly isotactic poly(<i>N</i> â€pentenylâ€carbazole). Polymer Composites, 2015, 36, 1110-1117.	2.3	22
45	Monolithic Polymeric Aerogels with VOCs Sorbent Nanoporous Crystalline and Water Sorbent Amorphous Phases. ACS Applied Materials & Interfaces, 2015, 7, 1318-1326.	4.0	28
46	Ring-opening polymerization of ω-6-hexadecenlactone by a salicylaldiminato aluminum complex: a route to semicrystalline and functional poly(ester)s. Polymer Chemistry, 2015, 6, 1727-1740.	1.9	32
47	Poly(<scp>l</scp> -lactic acid): Uniplanar Orientation in Cocrystalline Films and Structure of the Cocrystalline Form with Cyclopentanone. Macromolecules, 2015, 48, 7513-7520.	2.2	26
48	Ring-opening homo- and co-polymerization of lactides and Îμ-caprolactone by salalen aluminum complexes. Dalton Transactions, 2015, 44, 2157-2165.	1.6	75
49	Ethylene/1,3-butadiene cyclocopolymerization catalyzed by zirconocene systems. European Polymer Journal, 2014, 58, 157-163.	2.6	17
50	Highly isotactic poly(N-pentenyl-carbazole): A challenging polymer for optoelectronic applications. , 2014, , .		7
51	Nâ€doped <scp>TiO₂</scp> /sâ€ <scp>PS</scp> aerogels for photocatalytic degradation of organic dyes in wastewater under visible light irradiation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1175-1181.	1.6	89
52	Random l-lactide/ε-caprolactone copolymers as drug delivery materials. Journal of Materials Science, 2014, 49, 5986-5996.	1.7	14
53	Toward a Compact Instrument for Detecting Drug Precursors in Different Environments. Lecture Notes in Electrical Engineering, 2014, , 89-93.	0.3	0
54	Sulfonated syndiotactic polystyrene: sorption of ionic liquid in the amorphous phase and of organic guests in the crystalline phase. Polymers for Advanced Technologies, 2013, 24, 56-61.	1.6	5

#	Article	IF	CITATIONS
55	Ethylene-1,2-cyclopentane random copolymers from cyclocopolymerization of ethylene/1,3-butadiene. Polymer, 2013, 54, 3767-3773.	1.8	12
56	Zirconium and hafnium Salalen complexes in isospecific polymerisation of propylene. Dalton Transactions, 2013, 42, 9096.	1.6	27
57	The 60th Birthday of Prof. Gaetano Guerra. Macromolecular Chemistry and Physics, 2013, 214, 1883-1884.	1.1	0
58	Drugs and precursor sensing by complementing low cost multiple techniques: overview of the European FP7 project CUSTOM. , 2012, , .		1
59	Infrared linear dichroism as a tool to evaluate volatile guest partition between amorphous and nanoporousâ€crystalline polymer phases. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1474-1479.	2.4	7
60	Oscillating Nonâ€Metallocenes – from Stereoblockâ€Isotactic Polypropylene to Isotactic Polypropylene via Zirconium and Hafnium Dithiodiphenolate Catalysts. European Journal of Inorganic Chemistry, 2011, 2011, 5219-5223.	1.0	18
61	Salalen Titanium Complexes in the Highly Isospecific Polymerization of 1â€Hexene and Propylene. Angewandte Chemie - International Edition, 2011, 50, 3529-3532.	7.2	107
62	Back Cover: Salalen Titanium Complexes in the Highly Isospecific Polymerization of 1-Hexene and Propylene (Angew. Chem. Int. Ed. 15/2011). Angewandte Chemie - International Edition, 2011, 50, 3574-3574.	7.2	0
63	Semicrystalline proton-conductive membranes with sulfonated amorphous phases. International Journal of Hydrogen Energy, 2011, 36, 8038-8044.	3.8	11
64	Same Ligand, Different Metals: Diiodoâ^'Salan Complexes of the Group 4 Triad in Isospecific Polymerization of 1-Hexene and Propylene. Macromolecules, 2010, 43, 1689-1691.	2.2	49
65	Molecular Sensing by Nanoporous Crystalline Polymers. Sensors, 2009, 9, 9816-9857.	2.1	75
66	Syndiotactic Polystyrene Films with Sulfonated Amorphous Phase and Nanoporous Crystalline Phase. Chemistry of Materials, 2009, 21, 3191-3196.	3.2	38
67	Chloroform sorption in nanoporous crystalline and amorphous phases of syndiotactic polystyrene. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 8-15.	2.4	31
68	Guest Orientation in Uniplanar-Axial Polymer Host Films and in Co-Crystal Unit-Cell, Determined by Angular Distributions of Polarized Guest Fluorescence. Macromolecules, 2008, 41, 9156-9164.	2.2	62
69	Photoisomerization patterns based on molecular complex phases of syndiotactic polystyrene. Journal of Materials Chemistry, 2007, 17, 531-535.	6.7	59
70	Fluorescence of Syndiotactic Polystyrene/Trimethylbenzene Clathrate and Intercalate Co-Crystals. Chemistry of Materials, 2007, 19, 6041-6046.	3.2	78
71	Polymer/Gas Clathrates for Gas Storage and Controlled Release. Macromolecules, 2006, 39, 9166-9170.	2.2	48
72	Anisotropic Guest Diffusion in the δ Crystalline Host Phase of Syndiotactic Polystyrene: Transport Kinetics in Films with Three Different Uniplanar Orientations of the Host Phase. Chemistry of Materials, 2006, 18, 2205-2210.	3.2	66

#	Article	IF	CITATIONS
73	Oriented Nanoporous Hostî´ Phases of Syndiotactic Polystyrene as a Tool for Spectroscopic Investigation of Guest Molecules. Macromolecular Symposia, 2006, 234, 102-110.	0.4	5
74	Infrared spectra and thermal reactivity of ethene copolymers containing 1,2-cyclopropane units. Polymer, 2006, 47, 2274-2279.	1.8	3
75	Crystalline structures of intercalate molecular complexes of syndiotactic polystyrene with two fluorescent guests: 1,3,5-Trimethyl-benzene and 1,4-dimethyl-naphthalene. Polymer, 2006, 47, 2402-2410.	1.8	112
76	Thermal crosslinking of ethene copolymers containing 1,2-cyclopropane units. Polymer, 2005, 46, 2847-2853.	1.8	7
77	Optical Recording Materials Based on Photoisomerization of Guest Molecules of a Polymeric Crystalline Host Phase. Advanced Materials, 2005, 17, 1166-1168.	11.1	84
78	Aerogels with a Microporous Crystalline Host Phase. Advanced Materials, 2005, 17, 1515-1518.	11.1	182
79	A Clear-Cut Experimental Method to Discriminate between In-Plane and Out-of-Plane Molecular Transition Moments. Journal of the American Chemical Society, 2005, 127, 13114-13115.	6.6	52
80	Orientation and Microenvironment of Naphthalene Guest in the Host Nanoporous Phase of Syndiotactic Polystyrene. Macromolecules, 2005, 38, 3696-3702.	2.2	66
81	An Intercalate Molecular Complex of Syndiotactic Polystyrene. Macromolecules, 2005, 38, 6965-6971.	2.2	121
82	Thermoplastic Molecular Sieves: New Polymeric Materials for Molecular Packaging. ACS Symposium Series, 2005, , 171-186.	0.5	0
83	Gas sorption and transport in syndiotactic polystyrene with nanoporous crystalline phase. Polymer, 2004, 45, 429-436.	1.8	80
84	Clathrate Phases of Styrene/p-Methylstyrene co-Syndiotactic Copolymers. Macromolecular Chemistry and Physics, 2003, 204, 859-867.	1.1	22
85	Polymeric sensing films absorbing organic guests into a nanoporous host crystalline phase. Sensors and Actuators B: Chemical, 2003, 92, 255-261.	4.0	103
86	Synthesis of Isotactic Poly-1,2-(4-methyl-1,3-pentadiene) by a Homogeneous Titanium Catalyst. Macromolecules, 2003, 36, 9249-9251.	2.2	42
87	Polymorphic Behavior of Syndiotactic Poly(p-chlorostyrene) and Styrene/p-Chlorostyrene Cosyndiotactic Random Copolymers. Macromolecules, 2003, 36, 7577-7584.	2.2	25
88	Probing by Time-Resolved FTIR Spectroscopy Mass Transport, Molecular Interactions, and Conformational Ordering in the System Chloroformâ^'Syndiotactic Polystyrene. Macromolecules, 2002, 35, 2296-2304.	2.2	88
89	Crystalline phase orientation in biaxially stretched isotactic polypropylene films. Macromolecular Symposia, 2002, 185, 53-63.	0.4	17
90	Shape and Volume of Cavities in Thermoplastic Molecular Sieves Based on Syndiotactic Polystyrene. Chemistry of Materials, 2001, 13, 1506-1511.	3.2	174

#	Article	IF	CITATIONS
91	Clathrates with tetrahydrofuran of styrene-p-methyl styrene co-syndiotactic copolymers. Macromolecular Symposia, 2001, 166, 165-172.	0.4	3
92	Pseudo-Hexagonal Crystallinity in Ethene-Styrene Random Copolymers. Macromolecular Chemistry and Physics, 2001, 202, 382-387.	1.1	7
93	C2-Symmetric Zirconocenes for High Molecular Weight Amorphous Poly(propylene). Macromolecular Chemistry and Physics, 2001, 202, 2010-2028.	1.1	30
94	Crystalline Structure of Isotactic Poly(vinylcyclobutane) from Fiber Diffraction Spectra. Macromolecules, 2000, 33, 125-129.	2.2	5
95	Thermoplastic Molecular Sieves. Chemistry of Materials, 2000, 12, 363-368.	3.2	116
96	Regeneration of nanoporous crystalline syndiotactic polystyrene by supercritical CO2. Journal of Applied Polymer Science, 1999, 74, 2077-2082.	1.3	101
97	Pseudohexagonal crystallinity and thermal and tensile properties of ethene-propene copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1095-1103.	2.4	21
98	Crystal Structure of the Stereoregular Ethylene-alt-styrene Copolymer Synthesized with a Zirconocene-Based Catalyst. Macromolecules, 1999, 32, 2675-2678.	2.2	26
99	Chemical separations by nanoporous crystalline samples of syndiotactic polystyrene. Macromolecular Symposia, 1999, 138, 131-137.	0.4	9
100	Structural variations in random copolymers of tetrafluoroethylene with kind and content of comonomer units. Polymer, 1998, 39, 3205-3209.	1.8	17
101	Ethyleneâ^'Styrene Copolymers by ansa-Zirconocene- and half-Titanocene-Based Catalysts:  Composition, Stereoregularity, and Crystallinity. Macromolecules, 1998, 31, 4027-4029.	2.2	29
102	Crystal structure of syndiotactic poly (4-methyl-1-pentene). Polymer, 1995, 36, 3619-3624.	1.8	21
103	Thermal and Structural Characterization of Poly(methylene-1,3-cyclopentane) Samples of Different Microstructures. Macromolecules, 1995, 28, 2383-2388.	2.2	48
104	Allyltrimethylsilane polymers from metallocene catalysts: tacticity and structural characterization. Polymer, 1994, 35, 4648-4655.	1.8	21
105	Crystal Structure of Form III and the Polymorphism of Isotactic Poly(4-methylpentene-1). Macromolecules, 1994, 27, 3864-3868.	2.2	34
106	Sul polimorfismo del poli(4-metil-1-pentene) isotattico. Rendiconti Lincei, 1993, 4, 99-106.	1.0	1
107	Molecular mechanics and the polymerization mechanism of homogeneous and heterogeneous Zieglerâ€Natta catalysts. Makromolekulare Chemie Macromolecular Symposia, 1993, 69, 237-246. 	0.6	10
108	Chain conformation and unit cell in the crystalline phase of syndiotactic poly(4-methyl-1-pentene). Macromolecules, 1992, 25, 6938-6942.	2.2	20

#	Article	IF	CITATIONS
109	X-ray diffraction, conformational analysis and stereoregularity of a crystalline poly(3-methyl-1,) Tj ETQq1 1 0.7843	314 rgBT 1.8	/Oyerlock 10
110	Structural analogies between homogeneous and heterogeneous catalysts for the stereospecific polymerization of 1-alkenes. Journal of Molecular Catalysis, 1992, 74, 433-442.	1.2	40
111	Crystal structure of the form I of syndiotactic poly(1-butene). Die Makromolekulare Chemie, 1992, 193, 1351-1358.	1.1	30
112	Polymorphism and chain conformations in the crystalline forms of syndiotactic poly(1-butene). Macromolecules, 1991, 24, 5645-5650.	2.2	43
113	Mechanism of monomer insertion for heterogeneous isospecific Ziegler-Natta catalytic models. European Polymer Journal, 1991, 27, 45-54.	2.6	32
114	Possible model for chain end control of stereoregularity in the isospecific homogeneous Ziegler-Natta polymerization. Polymer, 1990, 31, 530-537.	1.8	59
115	Polymer co-crystalline films for photonics. Journal of the European Optical Society-Rapid Publications, 0, 4, .	0.9	8