
Noelia SÃ;nchez-Maroño

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9108166/publications.pdf Version: 2024-02-01

4

	ynthetic Population of Agents Through Decision Trees and Socio Demographic Data. n Computer Science, 2021, , 128-140.	1.0	
			0
2 A FIPA-ACL bas	ed communication utility for Unity. , 2020, , .		0
A Review of Mi 3 Molecular Biol	croarray Datasets: Where to Find Them and Specific Characteristics. Methods in ogy, 2019, 1986, 65-85.	0.4	16
4 Classification of	f Microarray Data. Methods in Molecular Biology, 2019, 1986, 185-205.	0.4	2
5 Insights into d	stributed feature ranking. Information Sciences, 2019, 496, 378-398.	4.0	8
6 On the scalabi Systems, 2018	ity of feature selection methods on high-dimensional data. Knowledge and Information , 56, 395-442.	2.1	31
7 Interactions M Workplace Net	atter: Modelling Everyday Pro-environmental Norm Transmission and Diffusion in works. Understanding Complex Systems, 2017, , 27-52.	0.3	0
8 On the analysi	s of local and global features for hyperemia grading. Proceedings of SPIE, 2017, , .	0.8	1
9 Exploring the c	onsequences of distributed feature selection in DNA microarray data. , 2017, , .		9
10 Machine learni	ng models to search relevant genetic signatures in clinical context. , 2017, , .		3
11 Testing Scenar Modeling. Envi	ios to Achieve Workplace Sustainability Goals Using Backcasting and Agent-Based ronment and Behavior, 2017, 49, 1007-1037.	2.1	8
12 Feature selecti	on for high-dimensional data. Progress in Artificial Intelligence, 2016, 5, 65-75.	1.5	97
On the develop 13 feature selectio 71, 30-42.	oment of conjunctival hyperemia computer-assisted diagnosis tools: Influence of on and class imbalance in automatic gradings. Artificial Intelligence in Medicine, 2016,	3.8	11
14 Two-Class with in Computer S	Oversampling Versus One-Class Classification for Microarray Datasets. Lecture Notes cience, 2016, , 398-405.	1.0	0
A unified pipeli 15 2016, 55, 532	ne for online feature selection and classification. Expert Systems With Applications, 545.	4.4	11
	of performance of K-complex classification methods using feature selection. iences, 2016, 328, 1-14.	4.0	35
	es and emerging challenges of feature selection in the context of big data. ed Systems, 2015, 86, 33-45.	4.0	219

18 Selecting target concept in one-class classification for handling class imbalance problem. , 2015, , .

2

#	Article	IF	CITATIONS
19	Real-Time Tear Film Classification Through Cost-Based Feature Selection. Lecture Notes in Computer Science, 2015, , 78-98.	1.0	3
20	Distributed feature selection: An application to microarray data classification. Applied Soft Computing Journal, 2015, 30, 136-150.	4.1	154
21	An Agent-Based Model for Simulating Environmental Behavior in an Educational Organization. Neural Processing Letters, 2015, 42, 89-118.	2.0	14
22	A Distributed Feature Selection Approach Based on a Complexity Measure. Lecture Notes in Computer Science, 2015, , 15-28.	1.0	8
23	Feature Selection for High-Dimensional Data. The Artificial Intelligence: Foundationsory, and Algorithms, 2015, , .	0.2	141
24	Designing Decision Trees for Representing Sustainable Behaviours in Agents. Advances in Intelligent Systems and Computing, 2015, , 169-176.	0.5	1
25	One-Class Classification for Microarray Datasets with Feature Selection. Communications in Computer and Information Science, 2015, , 325-334.	0.4	1
26	A framework for cost-based feature selection. Pattern Recognition, 2014, 47, 2481-2489.	5.1	70
27	A Methodology for Improving Tear Film Lipid Layer Classification. IEEE Journal of Biomedical and Health Informatics, 2014, 18, 1485-1493.	3.9	32
28	Data classification using an ensemble of filters. Neurocomputing, 2014, 135, 13-20.	3.5	78
29	A review of microarray datasets and applied feature selection methods. Information Sciences, 2014, 282, 111-135.	4.0	507
30	A review of feature selection methods on synthetic data. Knowledge and Information Systems, 2013, 34, 483-519.	2.1	563
31	Toward the scalability of neural networks through feature selection. Expert Systems With Applications, 2013, 40, 2807-2816.	4.4	10
32	A Decision-Making Model for Environmental Behavior in Agent-Based Modeling. Lecture Notes in Computer Science, 2013, , 152-160.	1.0	1
33	Scaling Up Feature Selection: A Distributed Filter Approach. Lecture Notes in Computer Science, 2013, , 121-130.	1.0	4
34	Up-to-Date Feature Selection Methods for Scalable and Efficient Machine Learning. , 2013, , 1-26.		3
35	Interferential Tear Film Lipid Layer Classification: An Automatic Dry Eye Test. , 2012, , .		3
36	An ensemble of filters and classifiers for microarray data classification. Pattern Recognition, 2012, 45, 531-539.	5.1	172

Noelia SÃinchez-Maroño

#	Article	IF	CITATIONS
37	An Agent-Based Prototype for Enhancing Sustainability Behavior at an Academic Environment. Advances in Intelligent and Soft Computing, 2012, , 257-264.	0.2	2
38	Feature selection and classification in multiple class datasets: An application to KDD Cup 99 dataset. Expert Systems With Applications, 2011, 38, 5947-5957.	4.4	166
39	Reducing dimensionality in a database of sleep EEG arousals. Expert Systems With Applications, 2011, 38, 7746-7754.	4.4	22
40	Combining functional networks and sensitivity analysis as wrapper method for feature selection. Expert Systems With Applications, 2011, 38, 12930-12938.	4.4	2
41	On the behavior of feature selection methods dealing with noise and relevance over synthetic scenarios. , 2011, , .		4
42	Scalability Analysis of ANN Training Algorithms with Feature Selection. Lecture Notes in Computer Science, 2011, , 84-93.	1.0	3
43	Multiclass classifiers vs multiple binary classifiers using filters for feature selection. , 2010, , .		7
44	On the effectiveness of discretization on gene selection of microarray data. , 2010, , .		24
45	A Privacy-Preserving Distributed and Incremental Learning Method for Intrusion Detection. Lecture Notes in Computer Science, 2010, , 415-421.	1.0	1
46	Web-Based Multimedia Tools for Monitoring and E-Learning. , 2010, , 1-21.		2
47	A Wrapper Method for Feature Selection in Multiple Classes Datasets. Lecture Notes in Computer Science, 2009, , 456-463.	1.0	17
48	Functional Network Topology Learning and Sensitivity Analysis Based on ANOVA Decomposition. Neural Computation, 2007, 19, 231-257.	1.3	10
49	Filter Methods for Feature Selection – A Comparative Study. , 2007, , 178-187.		169
50	An Improved Version of the Wrapper Feature Selection Method Based on Functional Decomposition. Lecture Notes in Computer Science, 2007, , 240-249.	1.0	1
51	Feature Selection Based on Sensitivity Analysis. Lecture Notes in Computer Science, 2007, , 239-248.	1.0	5
52	Functional Networks and Analysis of Variance for Feature Selection. Lecture Notes in Computer Science, 2006, , 1031-1038.	1.0	4
53	Modelling Engineering Problems Using Dimensional Analysis for Feature Extraction. Lecture Notes in Computer Science, 2005, , 949-954.	1.0	0
54	Recovering Missing Data with Functional and Bayesian Networks. Lecture Notes in Computer Science, 2003, , 489-496.	1.0	1

#	Article	IF	CITATIONS
55	An Auto-learning System for the Classification of Fetal Heart Rate Decelerative Patterns. Lecture Notes in Computer Science, 2001, , 393-400.	1.0	0