List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9107474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of water on pyridine pyrolysis: A reactive force field molecular dynamics study. Energy, 2022, 238, 121798.	8.8	18
2	Mechanisms for kerogen wettability transition from water-wet to CO2-wet: Implications for CO2 sequestration. Chemical Engineering Journal, 2022, 428, 132020.	12.7	40
3	Effects of the electric field on soot formation in combustion: A coupled charged particle PBE-CFD framework. Combustion and Flame, 2022, 239, 111796.	5.2	10
4	Small-scale fluctuation and scaling law of mixing in three-dimensional rotating turbulent Rayleigh-Taylor instability. Physical Review E, 2022, 105, 015103.	2.1	3
5	A three-dimensional discrete Boltzmann model for steady and unsteady detonation. Journal of Computational Physics, 2022, 455, 111002.	3.8	10
6	Atomically Dispersed Zn‣tabilized Ni ^{δ+} Enabling Tunable Selectivity for CO ₂ Hydrogenation. ChemSusChem, 2022, 15, .	6.8	10
7	A reactive force field molecular dynamics study on the inception mechanism of titanium tetraisopropoxide (TTIP) conversion to titanium clusters. Chemical Engineering Science, 2022, 252, 117496.	3.8	6
8	Improved three-dimensional thermal multiphase lattice Boltzmann model for liquid-vapor phase change. Physical Review E, 2022, 105, 025308.	2.1	7
9	Direct numerical simulation of turbulent premixed ammonia and ammonia-hydrogen combustion under engine-relevant conditions. International Journal of Hydrogen Energy, 2022, 47, 11083-11100.	7.1	34
10	Droplet evaporation in finite-size systems: Theoretical analysis and mesoscopic modeling. Physical Review E, 2022, 105, 025101.	2.1	18
11	Modelling of laminar diffusion flames with biodiesel blends and soot formation. Fuel, 2022, 317, 122897.	6.4	5
12	On the determination of Lennard-Jones parameters for polyatomic molecules. Physical Chemistry Chemical Physics, 2022, 24, 10147-10159.	2.8	6
13	How sodium chloride extends lifetime of bulk nanobubbles in water. Soft Matter, 2022, 18, 2968-2978.	2.7	8
14	Dual Functionalized Interstitial N Atoms in Co ₃ Mo ₃ N Enabling CO ₂ Activation. ACS Catalysis, 2022, 12, 4696-4706.	11.2	17
15	Triple-emission nitrogen and boron co-doped carbon quantum dots from lignin: Highly fluorescent sensing platform for detection of hexavalent chromium ions. Journal of Colloid and Interface Science, 2022, 617, 557-567.	9.4	37
16	Unified lattice Boltzmann method with improved schemes for multiphase flow simulation: Application to droplet dynamics under realistic conditions. Physical Review E, 2022, 105, 045314.	2.1	12
17	Exploring Complex Reaction Networks Using Neural Network-Based Molecular Dynamics Simulation. Journal of Physical Chemistry Letters, 2022, 13, 4052-4057.	4.6	14
18	A molecular dynamics study of evaporation of multicomponent stationary and moving fuel droplets in multicomponent ambient gases under supercritical conditions. Energy, 2022, 258, 124838.	8.8	3

#	Article	IF	CITATIONS
19	Experimental and numerical study on soot formation in laminar diffusion flames of biodiesels and methyl esters. Proceedings of the Combustion Institute, 2021, 38, 1335-1344.	3.9	10
20	Reactive and electron force field molecular dynamics simulations of electric field assisted ethanol oxidation reactions. Proceedings of the Combustion Institute, 2021, 38, 6605-6613.	3.9	17
21	Phase transitions of multi-component fuel droplets under sub- and supercritical conditions. Fuel, 2021, 287, 119516.	6.4	33
22	Study of pore-scale coke combustion in porous media using lattice Boltzmann method. Combustion and Flame, 2021, 225, 104-119.	5.2	24
23	A molecular dynamics study on oxidation of aluminum hydride (AlH3)/hydroxyl-terminated polybutadiene (HTPB) solid fuel. Proceedings of the Combustion Institute, 2021, 38, 4469-4476.	3.9	20
24	Large eddy simulation of Cambridge bluff-body coal (CCB2) flames with a flamelet progress variable model. Proceedings of the Combustion Institute, 2021, 38, 5347-5354.	3.9	2
25	Multiple-relaxation-time discrete Boltzmann modeling of multicomponent mixture with nonequilibrium effects. Physical Review E, 2021, 103, 013305.	2.1	20
26	Lattice Boltzmann modeling and simulation of forced-convection boiling on a cylinder. Physics of Fluids, 2021, 33, .	4.0	37
27	Pore-scale simulation of miscible viscous fingering with dissolution reaction in porous media. Physics of Fluids, 2021, 33, .	4.0	25
28	Simulation of indoor harmful gas dispersion and airflow using three-dimensional lattice Boltzmann method based large-eddy simulation. AIP Advances, 2021, 11, 035235.	1.3	4
29	Improved pseudopotential lattice Boltzmann model for liquid water transport inside gas diffusion layers. International Journal of Hydrogen Energy, 2021, 46, 15938-15950.	7.1	18
30	Three-dimensional multiple-relaxation-time discrete Boltzmann model of compressible reactive flows with nonequilibrium effects. AIP Advances, 2021, 11, .	1.3	11
31	Lattice Boltzmann simulation of a water droplet penetrating a micropillar array in a microchannel. Physics of Fluids, 2021, 33, .	4.0	17
32	Progress in carbon-based electrocatalyst derived from biomass for the hydrogen evolution reaction. Fuel, 2021, 293, 120440.	6.4	53
33	Cross talk between endothelial and red blood cell glycocalyces via near-field flow. Biophysical Journal, 2021, 120, 3180-3191.	0.5	11
34	Lattice Boltzmann Simulation of Multicomponent Porous Media Flows With Chemical Reaction. Frontiers in Physics, 2021, 9, .	2.1	4
35	Combustion Mode and Mixing Characteristics of a Reacting Jet in Crossflow. Energy & Fuels, 2021, 35, 13325-13337.	5.1	3
36	A unified lattice Boltzmann model and application to multiphase flows. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200397.	3.4	23

#	Article	IF	CITATIONS
37	Understanding the Role of Endothelial Glycocalyx in Mechanotransduction via Computational Simulation: A Mini Review. Frontiers in Cell and Developmental Biology, 2021, 9, 732815.	3.7	4
38	Dynamic behavior of droplet transport on realistic gas diffusion layer with inertial effect via a unified lattice Boltzmann method. International Journal of Hydrogen Energy, 2021, 46, 33260-33271.	7.1	6
39	Spray–turbulence–chemistry interactions under engine-like conditions. Progress in Energy and Combustion Science, 2021, 86, 100939.	31.2	22
40	Size effects on dynamics of nanodroplets in binary head-on collisions. Journal of Molecular Liquids, 2021, 341, 117383.	4.9	7
41	Atomic-level insights into transition mechanism of dominant mixing modes of multi-component fuel droplets: From evaporation to diffusion. Fuel, 2021, 304, 121464.	6.4	16
42	Coked Ni/Al ₂ O ₃ from the catalytic reforming of volatiles from co-pyrolysis of lignin and polyethylene: preparation, identification and application as a potential adsorbent. Catalysis Science and Technology, 2021, 11, 4162-4171.	4.1	9
43	Green Synthesis of Tunable Fluorescent Carbon Quantum Dots from Lignin and Their Application in Anti-Counterfeit Printing. ACS Applied Materials & amp; Interfaces, 2021, 13, 56465-56475.	8.0	82
44	Membrane Deformation of Endothelial Surface Layer Interspersed with Syndecan-4: A Molecular Dynamics Study. Annals of Biomedical Engineering, 2020, 48, 357-366.	2.5	5
45	Principal mode of Syndecanâ€4 mechanotransduction for the endothelial glycocalyx is a scissorâ€like dimer motion. Acta Physiologica, 2020, 228, e13376.	3.8	22
46	Discrete fluidization of dense monodisperse emulsions in neutral wetting microchannels. Soft Matter, 2020, 16, 651-658.	2.7	9
47	Shear dynamics of confined bijels. AIP Advances, 2020, 10, 095304.	1.3	8
48	Size-derived reaction mechanism of core-shell aluminum nanoparticle. Applied Physics Letters, 2020, 117, .	3.3	15
49	Artificial neural network based chemical mechanisms for computationally efficient modeling of hydrogen/carbon monoxide/kerosene combustion. International Journal of Hydrogen Energy, 2020, 45, 29594-29605.	7.1	28
50	Mesoscopic simulation of three-dimensional pool boiling based on a phase-change cascaded lattice Boltzmann method. Physics of Fluids, 2020, 32, .	4.0	63
51	Sodium ion transport across the endothelial glycocalyx layer under electric field conditions: A molecular dynamics study. Journal of Chemical Physics, 2020, 153, 105102.	3.0	3
52	Kinetic Simulation of Unsteady Detonation with Thermodynamic Nonequilibrium Effects. Combustion, Explosion and Shock Waves, 2020, 56, 435-443.	0.8	7
53	The role of brine in gas adsorption and dissolution in kerogen nanopores for enhanced gas recovery and CO2 sequestration. Chemical Engineering Journal, 2020, 399, 125704.	12.7	23
54	A deep learning framework for hydrogen-fueled turbulent combustion simulation. International Journal of Hydrogen Energy, 2020, 45, 17992-18000.	7.1	20

#	Article	IF	CITATIONS
55	Effects of hysteresis window on contact angle hysteresis behaviour at large Bond number. Journal of Colloid and Interface Science, 2020, 566, 327-337.	9.4	25
56	A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. Journal of Hazardous Materials, 2020, 389, 122102.	12.4	504
57	Reaction Mechanism of the Aluminum Nanoparticle: Physicochemical Reaction and Heat/Mass Transfer. Journal of Physical Chemistry C, 2020, 124, 3886-3894.	3.1	31
58	Insights into recovery of multi-component shale gas by CO2 injection: A molecular perspective. Fuel, 2020, 267, 117247.	6.4	42
59	Effects of Acoustic Excitation on the Combustion Instability of Hydrogen–Methane Lean Premixed Swirling Flames. ACS Omega, 2020, 5, 8744-8753.	3.5	8
60	Analysis of Gas-Assisted Pulverized Coal Combustion in Cambridge Coal Burner CCB1 Using FPV-LES. Energy & Fuels, 2020, 34, 7477-7489.	5.1	5
61	Differential diffusion effects on density-driven instability of reactive flows in porous media. Physical Review Fluids, 2020, 5, .	2.5	9
62	Lattice Boltzmann simulation of water droplet impacting a hydrophobic plate with a cylindrical pore. Physical Review Fluids, 2020, 5, .	2.5	12
63	Droplet impacting a superhydrophobic mesh array: Effect of liquid properties. Physical Review Fluids, 2020, 5, .	2.5	20
64	Study of mechanisms for electric field effects on ethanol oxidation via reactive force field molecular dynamics. Proceedings of the Combustion Institute, 2019, 37, 5525-5535.	3.9	36
65	A reactive molecular dynamics simulation study of methane oxidation assisted by platinum/graphene-based catalysts. Proceedings of the Combustion Institute, 2019, 37, 5473-5480.	3.9	38
66	Ethanol oxidation with high water content: A reactive molecular dynamics simulation study. Fuel, 2019, 235, 515-521.	6.4	19
67	Trace metal assisted polycyclic aromatic hydrocarbons fragmentation, growth and soot nucleation. Proceedings of the Combustion Institute, 2019, 37, 1023-1030.	3.9	21
68	Flame evolution in shock-accelerated flow under different reactive gas mixture gradients. Physical Review E, 2019, 100, 013111.	2.1	5
69	Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows. Physical Review E, 2019, 100, 023301.	2.1	29
70	Large eddy simulation of impinging flames: Unsteady ignition and flame propagation. Fuel, 2019, 255, 115734.	6.4	6
71	Energy transfer in intermolecular collisions of polycyclic aromatic hydrocarbons with bath gases He and Ar. Journal of Chemical Physics, 2019, 151, 044301.	3.0	11
72	Initiation mechanisms of enhanced pyrolysis and oxidation of JP-10 (exo-tetrahydrodicyclopentadiene) on functionalized graphene sheets: Insights from ReaxFF molecular dynamics simulations. Fuel, 2019, 254, 115643.	6.4	32

#	Article	IF	CITATIONS
73	Formation and evolution of flame kernels in autoignition of a turbulent hydrogen/air mixing layer at 50â€ ⁻ atm. Fuel, 2019, 255, 115735.	6.4	5
74	Fundamental Study on Mechanisms of Thermal Decomposition and Oxidation of Aluminum Hydride. Journal of Physical Chemistry C, 2019, 123, 24436-24445.	3.1	31
75	Atomistic insights into the dynamics of binary collisions between gaseous molecules and polycyclic aromatic hydrocarbon dimers. Physical Chemistry Chemical Physics, 2019, 21, 3849-3856.	2.8	10
76	Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects. Physical Review E, 2019, 99, 012142.	2.1	36
77	Regimes of Head-On Collisions of Equal-Sized Binary Droplets. Langmuir, 2019, 35, 8896-8902.	3.5	15
78	Numerical investigation of planar shock wave impinging on spherical gas bubble with different densities. Physics of Fluids, 2019, 31, .	4.0	24
79	Effects of Moisture Contents on Shale Gas Recovery and CO ₂ Sequestration. Langmuir, 2019, 35, 8716-8725.	3.5	53
80	Ignition dynamics of DME/methane-air reactive mixing layer under reactivity controlled compression ignition conditions: Effects of cool flames. Applied Energy, 2019, 249, 343-354.	10.1	24
81	Modeling realistic multiphase flows using a non-orthogonal multiple-relaxation-time lattice Boltzmann method. Physics of Fluids, 2019, 31, .	4.0	67
82	Three-dimensional non-orthogonal MRT pseudopotential lattice Boltzmann model for multiphase flows. Computers and Fluids, 2019, 186, 128-140.	2.5	53
83	Evaluation of the effect of nickel clusters on the formation of incipient soot particles from polycyclic aromatic hydrocarbons <i>via</i> ReaxFF molecular dynamics simulations. Physical Chemistry Chemical Physics, 2019, 21, 9865-9875.	2.8	12
84	Effects of Moisture and Salinity on Methane Adsorption in Kerogen: A Molecular Simulation Study. Energy & Fuels, 2019, 33, 5368-5376.	5.1	37
85	Generalized lattice Boltzmann model for frosting. Physical Review E, 2019, 99, 053301.	2.1	6
86	Microvascular ion transport through endothelial glycocalyx layer: new mechanism and improved Starling principle. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H104-H113.	3.2	9
87	Understanding endothelial glycocalyx function under flow shear stress from a molecular perspective. Biorheology, 2019, 56, 89-100.	0.4	5
88	Modelling of Sub-Grid Scale Reaction Rate Based on a Novel Series Model: Application to a Premixed Bluff-Body Stabilised Flame. Combustion Science and Technology, 2019, 191, 1043-1058.	2.3	2
89	Kinetic Simulation of Nonequilibrium Kelvin-Helmholtz Instability. Communications in Theoretical Physics, 2019, 71, 132.	2.5	11
90	Three-dimensional shock-sulfur hexafluoride bubble interaction. AIP Advances, 2019, 9, 115306.	1.3	1

#	Article	IF	CITATIONS
91	Implementation of contact angles in pseudopotential lattice Boltzmann simulations with curved boundaries. Physical Review E, 2019, 100, 053313.	2.1	53
92	Role of higher-order Hermite polynomials in the central-moments-based lattice Boltzmann framework. Physical Review E, 2019, 99, 013301.	2.1	27
93	A molecular dynamics study of fuel droplet evaporation in sub- and supercritical conditions. Proceedings of the Combustion Institute, 2019, 37, 3219-3227.	3.9	49
94	Response of heat release to equivalence ratio variations in high Karlovitz premixed H2/air flamesÂat 20Âatm. International Journal of Hydrogen Energy, 2019, 44, 3195-3207.	7.1	9
95	A technical method to improve NOx/NH3 mixing ratio in SCR system and its engineering applications. Journal of the Energy Institute, 2019, 92, 1757-1764.	5.3	15
96	An intelligent control of NH3 injection for optimizing the NOx/NH3 ratio in SCR system. Journal of the Energy Institute, 2019, 92, 1262-1269.	5.3	22
97	Pore-scale study of dissolution-driven density instability with reaction <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>+ in porous media. Physical Review Fluids, 2019, 4, .</mml:mo></mml:mrow></mml:math 	o> ens ml:m	ıi>₿9/mml:m
98	Cascaded lattice Boltzmann method for incompressible thermal flows with heat sources and general thermal boundary conditions. Computers and Fluids, 2018, 165, 89-95.	2.5	24
99	Regimes of Flow over Complex Structures of Endothelial Glycocalyx: A Molecular Dynamics Simulation Study. Scientific Reports, 2018, 8, 5732.	3.3	13
100	Large-scale molecular dynamics simulation of flow under complex structure of endothelial glycocalyx. Computers and Fluids, 2018, 173, 140-146.	2.5	19
101	Molecular conformational effects in H + n-heptane reaction rate calculations. Combustion and Flame, 2018, 193, 170-176.	5.2	2
102	Direct numerical simulation study of hydrogen/air auto-ignition in turbulent mixing layer at elevated pressures. Computers and Fluids, 2018, 173, 59-72.	2.5	21
103	MRT discrete Boltzmann method for compressible exothermic reactive flows. Computers and Fluids, 2018, 166, 176-183.	2.5	35
104	Modeling incompressible thermal flows using a central-moments-based lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2018, 120, 624-634.	4.8	47
105	Pressure effects on flame structures and chemical pathways for lean premixed turbulent H2/air flames: Three-dimensional DNS studies. Fuel, 2018, 215, 320-329.	6.4	17
106	Ignition and Oxidation of Core–Shell Al/Al ₂ O ₃ Nanoparticles in an Oxygen Atmosphere: Insights from Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2018, 122, 29620-29627.	3.1	43
107	Reducing Salt Intake and Exercising Regularly: Implications From Molecular Dynamics Simulations of Endothelial Glycocalyx. Frontiers in Physiology, 2018, 9, 1667.	2.8	8
108	State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Catalysis Science and Technology, 2018, 8, 6275-6296.	4.1	90

#	Article	IF	CITATIONS
109	Dimerization of Polycyclic Aromatic Hydrocarbon Molecules and Radicals under Flame Conditions. Journal of Physical Chemistry A, 2018, 122, 8701-8708.	2.5	27
110	Effects of pressure and Karlovitz number on the turbulence-flame interactions in lean premixed H2/air flames. Fuel, 2018, 234, 1293-1300.	6.4	11
111	Mesoscopic simulation of nonequilibrium detonation with discrete Boltzmann method. Combustion and Flame, 2018, 198, 356-362.	5.2	40
112	Three-dimensional cascaded lattice Boltzmann method: Improved implementation and consistent forcing scheme. Physical Review E, 2018, 97, 053309.	2.1	59
113	Thermodynamic Nonequilibrium Features in Binary Diffusion. Communications in Theoretical Physics, 2018, 69, 722.	2.5	4
114	Investigation of ethanol oxidation over aluminum nanoparticle using ReaxFF molecular dynamics simulation. Fuel, 2018, 234, 94-100.	6.4	55
115	Cascaded lattice Boltzmann method for thermal flows on standard lattices. International Journal of Thermal Sciences, 2018, 132, 368-377.	4.9	18
116	Mesoscopic model for soft flowing systems with tunable viscosity ratio. Physical Review Fluids, 2018, 3, .	2.5	20
117	Heat release rate variations in high hydrogen content premixed syngas flames at elevated pressures: Effect of equivalence ratio. International Journal of Hydrogen Energy, 2017, 42, 7029-7044.	7.1	31
118	Compact Chemical Mechanism for Autoignition and Combustion of Methylcyclohexane under Engine Relevant Conditions. Energy & Fuels, 2017, 31, 11337-11347.	5.1	10
119	Specificity Switching Pathways in Thermal and Mass Evaporation of Multicomponent Hydrocarbon Droplets: A Mesoscopic Observation. Scientific Reports, 2017, 7, 5001.	3.3	6
120	Large-scale molecular dynamics simulation of coupled dynamics of flow and glycocalyx: towards understanding atomic events on an endothelial cell surface. Journal of the Royal Society Interface, 2017, 14, 20170780.	3.4	22
121	Formation of incipient soot particles from polycyclic aromatic hydrocarbons: A ReaxFF molecular dynamics study. Carbon, 2017, 121, 380-388.	10.3	162
122	Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows. Physical Review E, 2017, 96, 053305.	2.1	41
123	Consistent forcing scheme in the cascaded lattice Boltzmann method. Physical Review E, 2017, 96, 053307.	2.1	57
124	A multi-component discrete Boltzmann model for nonequilibrium reactive flows. Scientific Reports, 2017, 7, 14580.	3.3	47
125	Investigation of methane oxidation by palladium-based catalyst via ReaxFF Molecular Dynamics simulation. Proceedings of the Combustion Institute, 2017, 36, 4339-4346.	3.9	42
126	Dynamics and kinetics of reversible homo-molecular dimerization of polycyclic aromatic hydrocarbons. Journal of Chemical Physics, 2017, 147, 244305.	3.0	26

#	Article	IF	CITATIONS
127	Catalytic Oxidation of Lignin in Solvent Systems for Production of Renewable Chemicals: A Review. Polymers, 2017, 9, 240.	4.5	72
128	Molecular Conformational Manifolds between Gas-Liquid Interface and Multiphasic. Entropy, 2017, 19, 695.	2.2	0
129	Combustion pattern, characteristics, and kinetics of biomass and chars from segmented heating carbonization. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 812-822.	1.5	18
130	Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers. Physical Review E, 2016, 94, 053313.	2.1	48
131	Bounce regime of droplet collisions: A molecular dynamics study. Journal of Computational Science, 2016, 17, 457-462.	2.9	27
132	High hydrogen content syngas fuel burning in lean premixed spherical flames at elevated pressures: Effects of preferential diffusion. International Journal of Hydrogen Energy, 2016, 41, 18231-18249.	7.1	46
133	Effects of pressure on cellular flame structure of high hydrogen content lean premixed syngas spherical flames: A DNS study. International Journal of Hydrogen Energy, 2016, 41, 21516-21531.	7.1	9
134	Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science, 2016, 52, 62-105.	31.2	689
135	Large-eddy simulations of diesel spray with a fine grid in a constant-volume vessel. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229, 247-260.	1.9	6
136	Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability. International Journal of Heat and Mass Transfer, 2015, 85, 787-796.	4.8	278
137	Molecular Dynamics Simulation of Sintering Dynamics of Many TiO \$\$_{2}\$\$ 2 Nanoparticles. Journal of Statistical Physics, 2015, 160, 1696-1708.	1.2	12
138	An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: Structures, pathways and interactions. Renewable and Sustainable Energy Reviews, 2015, 51, 761-774.	16.4	212
139	Improved forcing scheme in pseudopotential lattice Boltzmann methods for multiphase flow at arbitrarily high density ratios. Physical Review E, 2015, 91, 023305.	2.1	76
140	Sintering-Induced Phase Transformation of Nanoparticles: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2015, 119, 28631-28639.	3.1	26
141	Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows. Physical Review E, 2014, 89, 053022.	2.1	38
142	Multiphase cascaded lattice Boltzmann method. Computers and Mathematics With Applications, 2014, 67, 350-362.	2.7	71
143	Binary droplet collision simulations by a multiphase cascaded lattice Boltzmann method. Physics of Fluids, 2014, 26, .	4.0	70
144	Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Physical Review E, 2014, 90, 053301.	2.1	151

#	Article	IF	CITATIONS
145	Thermodynamic consistency of the pseudopotential lattice Boltzmann model for simulating liquid–vapor flows. Applied Thermal Engineering, 2014, 72, 56-61.	6.0	45
146	Response of curved premixed flames to single-frequency and wideband acoustic waves. Combustion and Flame, 2014, 161, 2868-2877.	5.2	19
147	Numerical simulation of the collision of two microdroplets with a pseudopotential multiple-relaxation-time lattice Boltzmann model. Microfluidics and Nanofluidics, 2014, 16, 329-346.	2.2	21
148	Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Physical Review E, 2013, 87, 053301.	2.1	376
149	Multifluid Modeling of the Desulfurization Process within a Bubbling Fluidized Bed Coal Gasifier. AICHE Journal, 2013, 59, 1952-1963.	3.6	19
150	Dry Pressure Drop Prediction within Montz-pak B1-250.45 Packing with Varied Inclination Angles and Geometries. Industrial & Engineering Chemistry Research, 2013, 52, 4372-4378.	3.7	13
151	Investigation of extinction and re-ignition in piloted turbulent non-premixed methane–air flames using LES and high-speed OH-LIF. Combustion Theory and Modelling, 2013, 17, 483-503.	1.9	20
152	Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows. Physical Review E, 2013, 88, 053307.	2.1	117
153	Lattice Boltzmann method for relativistic hydrodynamics: Issues on conservation law of particle number and discontinuities. Physical Review D, 2012, 86, .	4.7	7
154	Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Physical Review E, 2012, 86, 016709.	2.1	209
155	Modeling the thermochemical degradation of biomass inside a fast pyrolysis fluidized bed reactor. AICHE Journal, 2012, 58, 3030-3042.	3.6	80
156	The pyrolytic behavior of cellulose in lignocellulosic biomass: a review. RSC Advances, 2011, 1, 1641.	3.6	145
157	Dynamic Large-Eddy Simulation of Droplet Effects on a Reacting Plume in Countercurrent Configuration. Combustion Science and Technology, 2011, 183, 487-518.	2.3	5
158	Droplet Collision Simulation by a Multi-Speed Lattice Boltzmann Method. Communications in Computational Physics, 2011, 9, 1219-1234.	1.7	22
159	Swirling and Impinging Effects in an Annular Nonpremixed Jet Flame. Flow, Turbulence and Combustion, 2011, 86, 63-88.	2.6	14
160	Direct Numerical Simulation of Inert Droplet Effects on Scalar Dissipation Rate in Turbulent Reacting and Non-Reacting Shear Layers. Flow, Turbulence and Combustion, 2010, 84, 397-422.	2.6	18
161	DISCRETE ELEMENT METHOD FOR MULTISCALE MODELING. Journal of Multiscale Modeling, 2010, 02, 147-162.	1.1	14
162	Conditional statistics of inert droplet effects on turbulent combustion in reacting mixing layers. Combustion Theory and Modelling, 2009, 13, 901-920.	1.9	6

#	Article	IF	CITATIONS
163	Large-Eddy Simulation of Interactions Between a Reacting Jet and Evaporating Droplets. Flow, Turbulence and Combustion, 2008, 80, 133-153.	2.6	19
164	A Conceptual Study of Cavity Aeroacoustics Control Using Porous Media Inserts. Flow, Turbulence and Combustion, 2008, 80, 375-391.	2.6	23
165	Direct Numerical Simulation of a Non-Premixed Impinging Jet Flame. Journal of Heat Transfer, 2007, 129, 951-957.	2.1	8
166	Unsteady Heat Transfer Analysis of an Impinging Jet. Journal of Heat Transfer, 2002, 124, 1039-1048.	2.1	109
167	Numerical Simulation of Particle Dispersion in a Spatially Developing Mixing Layer. Theoretical and Computational Fluid Dynamics, 2002, 15, 403-420.	2.2	22
168	Direct Numerical Simulation of Transitional Noncircular Buoyant Reactive Jets. Theoretical and Computational Fluid Dynamics, 2001, 15, 183-198.	2.2	7
169	Study of Density Effects in Turbulent Buoyant Jets Using Large-Eddy Simulation. Theoretical and Computational Fluid Dynamics, 2001, 15, 95-120.	2.2	31
170	Mixing and Entrainment of Transitional Non-Circular Buoyant Reactive Plumes. Flow, Turbulence and Combustion, 2001, 67, 57-79.	2.6	8
171	Stretched Cartesian grids for solution of the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 2000, 33, 897-918.	1.6	15
172	Spatial Direct Numerical Simulation of the Large Vortical Structures in Forced Plumes. Flow, Turbulence and Combustion, 2000, 64, 43-69.	2.6	36
173	Direct Numerical Simulation of the Puffing Phenomenon of an Axisymmetric Thermal Plume. Theoretical and Computational Fluid Dynamics, 2000, 14, 55-74.	2.2	70
174	Direct Numerical Simulation of Supersonic Jet Flow. Journal of Engineering Mathematics, 1997, 32, 121-142.	1.2	10