Magdalena Jarosz-Biej

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9107454/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vascular disrupting agents in cancer therapy. European Journal of Pharmacology, 2021, 891, 173692.	1.7	50
2	The Proper Administration Sequence of Radiotherapy and Anti-Vascular Agent—DMXAA Is Essential to Inhibit the Growth of Melanoma Tumors. Cancers, 2021, 13, 3924.	1.7	9
3	Mesenchymal stromal cells as carriers of IL-12 reduce primary and metastatic tumors of murine melanoma. Scientific Reports, 2021, 11, 18335.	1.6	9
4	Adipose tissue-derived stromal cells stimulated macrophages-endothelial cells interactions promote effective ischemic muscle neovascularization. European Journal of Pharmacology, 2020, 883, 173354.	1.7	6
5	Brachytherapy in a Single Dose of 10Gy as an "in situ―Vaccination. International Journal of Molecular Sciences, 2020, 21, 4585.	1.8	8
6	The effect of culture media on large-scale expansion and characteristic of adipose tissue-derived mesenchymal stromal cells. Stem Cell Research and Therapy, 2019, 10, 235.	2.4	55
7	Tumor Microenvironment as A "Game Changer―in Cancer Radiotherapy. International Journal of Molecular Sciences, 2019, 20, 3212.	1.8	286
8	Monitoring of diffusion properties and transverse relaxation time of mouse ischaemic muscle after administration of human mesenchymal stromal cells derived from adipose tissue. Cell Proliferation, 2019, 52, e12672.	2.4	2
9	Human ADSC xenograft through IL-6 secretion activates M2 macrophages responsible for the repair of damaged muscle tissue. Stem Cell Research and Therapy, 2019, 10, 93.	2.4	23
10	Transcriptomes of human mesenchymal cells isolated from the right ventricle and epicardial fat differ strikingly both directly after isolation and longâ€ŧerm culture. ESC Heart Failure, 2019, 6, 351-361.	1.4	4
11	Bioresorbable filomicelles for targeted delivery of betulin derivative – In vitro study. International Journal of Pharmaceutics, 2019, 557, 43-52.	2.6	18
12	Combination of anti-vascular agent - DMXAA and HIF-1α inhibitor - digoxin inhibits the growth of melanoma tumors. Scientific Reports, 2018, 8, 7355.	1.6	33
13	M1-like macrophages change tumor blood vessels and microenvironment in murine melanoma. PLoS ONE, 2018, 13, e0191012.	1.1	66
14	Antitumor activity of opiorphin, sialorphin and their conjugates with a peptide klaklakklaklak. Journal of Peptide Science, 2016, 22, 723-730.	0.8	6
15	Human Cardiac Mesenchymal Stromal Cells with CD105+CD34- Phenotype Enhance the Function of Post-Infarction Heart in Mice. PLoS ONE, 2016, 11, e0158745.	1.1	29
16	Combined Tumor Cell-Based Vaccination and Interleukin-12 Gene Therapy Polarizes the Tumor Microenvironment in Mice. Archivum Immunologiae Et Therapiae Experimentalis, 2015, 63, 451-464.	1.0	11
17	Polarization of Tumor Milieu: Therapeutic Implications. , 2015, , 401-408.		3
18	D-K6L9 Peptide Combination with IL-12 Inhibits the Recurrence of Tumors in Mice. Archivum Immunologiae Et Therapiae Experimentalis, 2014, 62, 341-351.	1.0	19

#	Article	IF	CITATIONS
19	Antitumor Effects of Recombinant Antivascular Protein ABRaA-VEGF121 Combined with IL-12 Gene Therapy. Archivum Immunologiae Et Therapiae Experimentalis, 2014, 62, 161-168.	1.0	9
20	Characteristic of c-Kit+ progenitor cells in explanted human hearts. Clinical Research in Cardiology, 2014, 103, 711-718.	1.5	17
21	Therapeutic antitumor potential of endoglin-based DNA vaccine combined with immunomodulatory agents. Gene Therapy, 2013, 20, 262-273.	2.3	31
22	The Role of Glycyrrhizin, an Inhibitor of HMGB1 Protein, in Anticancer Therapy. Archivum Immunologiae Et Therapiae Experimentalis, 2012, 60, 391-399.	1.0	65