Ken-ichiro Kubo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9107366/publications.pdf

Version: 2024-02-01

45 papers

3,278 citations

201385 27 h-index 253896 43 g-index

46 all docs

46 docs citations

46 times ranked

4057 citing authors

#	Article	IF	CITATIONS
1	Rhythmic activation of excitatory neurons in the mouse frontal cortex improves the prefrontal cortex–mediated cognitive function. Cerebral Cortex, 2022, 32, 5243-5258.	1.6	1
2	Dab1-deficient deep layer neurons prevent Dab1-deficient superficial layer neurons from entering the cortical plate. Neuroscience Research, 2022, 180, 23-35.	1.0	2
3	Comprehensive characterization of migration profiles of murine cerebral cortical neurons during development using FlashTag labeling. IScience, 2021, 24, 102277.	1.9	15
4	Increased densities of white matter neurons as a crossâ€disease feature of neuropsychiatric disorders. Psychiatry and Clinical Neurosciences, 2020, 74, 166-175.	1.0	8
5	Human neocortical development as a basis to understand mechanisms underlying neurodevelopmental disabilities in extremely preterm infants. Journal of Obstetrics and Gynaecology Research, 2020, 46, 2242-2250.	0.6	1
6	Both excitatory and inhibitory neurons transiently form clusters at the outermost region of the developing mammalian cerebral neocortex. Journal of Comparative Neurology, 2019, 527, 1577-1597.	0.9	11
7	Drebrin-like (Dbnl) Controls Neuronal Migration via Regulating N-Cadherin Expression in the Developing Cerebral Cortex. Journal of Neuroscience, 2019, 39, 678-691.	1.7	22
8	ApoER2 Controls Not Only Neuronal Migration in the Intermediate Zone But Also Termination of Migration in the Developing Cerebral Cortex. Cerebral Cortex, 2018, 28, 223-235.	1.6	34
9	Reelin transiently promotes N-cadherin–dependent neuronal adhesion during mouse cortical development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2048-2053.	3.3	46
10	Excessive activation of AhR signaling disrupts neuronal migration in the hippocampal CA1 region in the developing mouse. Journal of Toxicological Sciences, 2017, 42, 25-30.	0.7	20
11	Association of impaired neuronal migration with cognitive deficits in extremely preterm infants. JCI Insight, 2017, 2, .	2.3	21
12	Impaired dendritic growth and positioning of cortical pyramidal neurons by activation of aryl hydrocarbon receptor signaling in the developing mouse. PLoS ONE, 2017, 12, e0183497.	1.1	11
13	In Utero Bisphenol A Exposure Induces Abnormal Neuronal Migration in the Cerebral Cortex of Mice. Frontiers in Endocrinology, 2016, 7, 7.	1.5	8
14	Reelin and Neuropsychiatric Disorders. Frontiers in Cellular Neuroscience, 2016, 10, 229.	1.8	143
15	SUMOylation of DISC1: A Potential Role in Neural Progenitor Proliferation in the Developing Cortex. Molecular Neuropsychiatry, 2016, 2, 20-27.	3.0	4
16	DISC1 a key molecular lead in psychiatry and neurodevelopment: No-More Disrupted-in-Schizophrenia 1. Molecular Psychiatry, 2016, 21, 1488-1489.	4.1	61
17	Resilience in schizophrenia: A comparative study between a remote island and an urban area in Japan. Schizophrenia Research, 2016, 171, 92-96.	1.1	9
18	The COUP-TFII/Neuropilin-2 is a molecular switch steering diencephalon-derived GABAergic neurons in the developing mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4985-94.	3.3	37

#	Article	IF	Citations
19	Cellular dynamics of neuronal migration in the hippocampus. Frontiers in Neuroscience, 2015, 9, 135.	1.4	51
20	Developmental origin of abnormal dendritic growth in the mouse brain induced by in utero disruption of aryl hydrocarbon receptor signaling. Neurotoxicology and Teratology, 2015, 52, 42-50.	1.2	35
21	Reelin has a preventive effect on phencyclidine-induced cognitive and sensory-motor gating deficits. Neuroscience Research, 2015, 96, 30-36.	1.0	30
22	Importance of Reelin C-Terminal Region in the Development and Maintenance of the Postnatal Cerebral Cortex and Its Regulation by Specific Proteolysis. Journal of Neuroscience, 2015, 35, 4776-4787.	1.7	64
23	Neuronal Heterotopias Affect the Activities of Distant Brain Areas and Lead to Behavioral Deficits. Journal of Neuroscience, 2015, 35, 12432-12445.	1.7	36
24	Reelin receptors ApoER2 and VLDLR are expressed in distinct spatiotemporal patterns in developing mouse cerebral cortex. Journal of Comparative Neurology, 2015, 523, 463-478.	0.9	53
25	Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Human Molecular Genetics, 2015, 24, 1630-1645.	1.4	136
26	Hippocampal Pyramidal Neurons Switch from a Multipolar Migration Mode to a Novel "Climbing― Migration Mode during Development. Journal of Neuroscience, 2014, 34, 1115-1126.	1.7	61
27	How does Reelin control neuronal migration and layer formation in the developing mammalian neocortex?. Neuroscience Research, 2014, 86, 50-58.	1.0	111
28	Dab1â€mediated colocalization of multiâ€adaptor protein <scp><scp>CIN85</scp></scp> with Reelin receptors, <scp>A</scp> po <scp>ER</scp> 2 and <scp>VLDLR</scp> , in neurons. Genes To Cells, 2013, 18, 410-424.	0.5	10
29	Reelin Controls Neuronal Positioning by Promoting Cell-Matrix Adhesion via Inside-Out Activation of Integrin $\hat{l}\pm5\hat{l}^21$. Neuron, 2012, 76, 353-369.	3.8	156
30	DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature, 2011, 473, 92-96.	13.7	181
31	Reelin inhibits migration of sympathetic preganglionic neurons in the spinal cord of the chick. Journal of Comparative Neurology, 2011, 519, 1970-1978.	0.9	4
32	The Outermost Region of the Developing Cortical Plate Is Crucial for Both the Switch of the Radial Migration Mode and the Dab1-Dependent "Inside-Out" Lamination in the Neocortex. Journal of Neuroscience, 2011, 31, 9426-9439.	1.7	104
33	GABAergic Precursor Transplantation into the Prefrontal Cortex Prevents Phencyclidine-Induced Cognitive Deficits. Journal of Neuroscience, 2011, 31, 14116-14125.	1.7	49
34	Disrupted-in-Schizophrenia-1 (Disc1) is necessary for migration of the pyramidal neurons during mouse hippocampal development. Human Molecular Genetics, 2011, 20, 2834-2845.	1.4	55
35	Ectopic Reelin Induces Neuronal Aggregation with a Normal Birthdate-Dependent "Inside-Out― Alignment in the Developing Neocortex. Journal of Neuroscience, 2010, 30, 10953-10966.	1.7	68
36	Migration defects by DISC1 knockdown in C57BL/6, 129X1/SvJ, and ICR strains via in utero gene transfer and virus-mediated RNAi. Biochemical and Biophysical Research Communications, 2010, 400, 631-637.	1.0	38

#	Article	IF	CITATIONS
37	Knockdown of DISC1 by In Utero Gene Transfer Disturbs Postnatal Dopaminergic Maturation in the Frontal Cortex and Leads to Adult Behavioral Deficits. Neuron, 2010, 65, 480-489.	3.8	275
38	Rab GTPases-Dependent Endocytic Pathways Regulate Neuronal Migration and Maturation through N-Cadherin Trafficking. Neuron, 2010, 67, 588-602.	3.8	291
39	Recruitment of PCM1 to the Centrosome by the Cooperative Action of DISC1 and BBS4. Archives of General Psychiatry, 2008, 65, 996.	13.8	124
40	Regulation of the interaction of Disabledâ€1 with CIN85 by phosphorylation with Cyclinâ€dependent kinase 5. Genes To Cells, 2007, 12, 1315-1327.	0.5	17
41	A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nature Cell Biology, 2005, 7, 1167-1178.	4.6	532
42	Cell and molecular mechanisms that control cortical layer formation in the brain. Keio Journal of Medicine, 2003, 52, 8-20.	0.5	22
43	Secreted Reelin molecules form homodimers. Neuroscience Research, 2002, 43, 381-388.	1.0	98
44	Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9729-9734.	3.3	126
45	Pax-6 is required for thalamocortical pathway formation in fetal rats., 1999, 408, 147-160.		97