
Catherine H Pashley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9107305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A taxonomic, cytological and genetic survey of Japanese knotweed <i>s.l.</i> in New Zealand indicates multiple secondary introductions from Europe and a direct introduction from Japan. New Zealand Journal of Botany, 2023, 61, 49-66.	0.8	3
2	What is allergic fungal sinusitis: A call to action. International Forum of Allergy and Rhinology, 2022, 12, 141-146.	1.5	6
3	A systematic review of outdoor airborne fungal spore seasonality across Europe and the implications for health. Science of the Total Environment, 2022, 818, 151716.	3.9	36
4	Pollen season trends as markers of climate change impact: Betula, Quercus and Poaceae. Science of the Total Environment, 2022, 831, 154882.	3.9	18
5	Fungal sensitization and positive fungal culture from sputum in children with asthma are associated with reduced lung function and acute asthma attacks respectively. Clinical and Experimental Allergy, 2021, 51, 790-800.	1.4	21
6	Fungal Bronchitis and not allergic bronchopulmonary aspergillosis. Chronic Respiratory Disease, 2021, 18, 147997312110018.	1.0	1
7	Fungal bronchitis is a distinct clinical entity which is responsive to antifungal therapy. Chronic Respiratory Disease, 2021, 18, 147997312096444.	1.0	5
8	Predicting the severity of the grass pollen season and the effect of climate change in Northwest Europe. Science Advances, 2021, 7, .	4.7	28
9	Allergic fungal airways disease (AFAD): an under-recognised asthma endotype. Mycopathologia, 2021, 186, 609-622.	1.3	28
10	New Perspectives in the Diagnosis and Management of Allergic Fungal Airway Disease. Journal of Asthma and Allergy, 2021, Volume 14, 557-573.	1.5	34
11	The airway fungal microbiome in asthma. Clinical and Experimental Allergy, 2020, 50, 1325-1341.	1.4	31
12	Air mass trajectories and land cover map reveal cereals and oilseed rape as major local sources of Alternaria spores in the Midlands, UK. Atmospheric Pollution Research, 2020, 11, 1668-1679.	1.8	16
13	Regional calendars and seasonal statistics for the United Kingdom's main pollen allergens. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1492-1494.	2.7	22
14	Comparative Analysis of Clinical Parameters and Sputum Biomarkers in Establishing the Relevance of Filamentous Fungi in Cystic Fibrosis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 605241.	1.8	1
15	Oak pollen seasonality and severity across Europe and modelling the season start using a generalized phenological model. Science of the Total Environment, 2019, 663, 527-536.	3.9	18
16	Airborne Alternaria and Cladosporium fungal spores in Europe: Forecasting possibilities and relationships with meteorological parameters. Science of the Total Environment, 2019, 653, 938-946.	3.9	61
17	Challenges in Laboratory Detection of Fungal Pathogens in the Airways of Cystic Fibrosis Patients. Mycopathologia, 2018, 183, 89-100.	1.3	21
18	rAsp f3 and rAsp f4 are associated with bronchiectasis in allergic fungal airways disease. Annals of Allergy, Asthma and Immunology, 2018, 120, 325-326.	0.5	4

CATHERINE H PASHLEY

#	Article	IF	CITATIONS
19	Challenges in Laboratory Detection of Fungal Pathogens in the Airways of Cystic Fibrosis Patients. , 2018, 183, 89.		1
20	The relationship between biomarkers of fungal allergy and lung damage in asthma. Clinical and Experimental Allergy, 2017, 47, 48-56.	1.4	63
21	Spatial and temporal variations in airborne Ambrosia pollen in Europe. Aerobiologia, 2017, 33, 181-189.	0.7	49
22	Sputum Inflammatory Mediators Are Increased in <i>Aspergillus fumigatus</i> Culture-Positive Asthmatics. Allergy, Asthma and Immunology Research, 2017, 9, 177.	1.1	12
23	Allergic Fungal Airway Disease. Journal of Investigational Allergology and Clinical Immunology, 2016, 26, 344-354.	0.6	76
24	Alternaria spores in the air across Europe: abundance, seasonality and relationships with climate, meteorology and local environment. Aerobiologia, 2016, 32, 3-22.	0.7	57
25	The long distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe. International Journal of Biometeorology, 2016, 60, 1829-1839.	1.3	47
26	Colonisation with filamentous fungi and acute asthma exacerbations in children. , 2016, , .		1
27	Ragweed pollen: is climate change creating a new aeroallergen problem in the <scp>UK</scp> ?. Clinical and Experimental Allergy, 2015, 45, 1262-1265.	1.4	8
28	Lassoing a chimera: the semantics of allergic fungal airway disease. Clinical and Experimental Allergy, 2015, 45, 1746-1749.	1.4	10
29	Allergic fungal airway disease. Current Opinion in Pulmonary Medicine, 2015, 21, 39-47.	1.2	54
30	Fungal Culture and Sensitisation in Asthma, Cystic Fibrosis and Chronic Obstructive Pulmonary Disorder: What Does It Tell Us?. Mycopathologia, 2014, 178, 457-463.	1.3	37
31	Geographic and temporal variations in pollen exposure across <scp>E</scp> urope. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 913-923.	2.7	109
32	Aspergillus fumigatus during stable state and exacerbations of COPD. European Respiratory Journal, 2014, 43, 64-71.	3.1	110
33	Fungal allergy in asthma–state of the art and research needs. Clinical and Translational Allergy, 2014, 4, 14.	1.4	264
34	Effectiveness of voriconazole in the treatment of Aspergillus fumigatus–associated asthma (EVITA3) Tj ETQqC	00.gBT	/Overlock 10 ⁻
35	Amplicon –Based Metagenomic Analysis of Mixed Fungal Samples Using Proton Release Amplicon Sequencing. PLoS ONE, 2014, 9, e93849.	1.1	57

36Isolation of <i>Aspergillus fumigatus </i>i> from sputum is associated with elevated airborne levels in
homes of patients with asthma. Indoor Air, 2013, 23, 275-284.2.023

CATHERINE H PASHLEY

#	Article	IF	CITATIONS
37	Routine processing procedures for isolating filamentous fungi from respiratory sputum samples may underestimate fungal prevalence. Medical Mycology, 2012, 50, 433-438.	0.3	94
38	DNA analysis of outdoor air reveals a high degree of fungal diversity, temporal variability, and genera not seen by spore morphology. Fungal Biology, 2012, 116, 214-224.	1.1	86
39	Fungi and allergic lower respiratory tract diseases. Journal of Allergy and Clinical Immunology, 2012, 129, 280-291.	1.5	398
40	Isolation of filamentous fungi from sputum in asthma is associated with reduced postâ€bronchodilator FEV ₁ . Clinical and Experimental Allergy, 2012, 42, 782-791.	1.4	90
41	ABPA or AFAA: That Is the Question. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1281-1282.	2.5	1
42	IgE Sensitization to <i>Aspergillus fumigatus</i> Is Associated with Reduced Lung Function in Asthma. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1362-1368.	2.5	222
43	Reproducibility between counts of airborne allergenic pollen from two cities in the East Midlands, UK. Aerobiologia, 2009, 25, 249-263.	0.7	28
44	A Genomic Scan for Selection Reveals Candidates for Genes Involved in the Evolution of Cultivated Sunflower (<i>Helianthus annuus</i>). Plant Cell, 2008, 20, 2931-2945.	3.1	269
45	Preserving Accuracy in GenBank. Science, 2008, 319, 1616-1616.	6.0	198
46	High genetic diversity in a rare and endangered sunflower as compared to a common congener. Molecular Ecology, 2006, 15, 2345-2355.	2.0	91
47	EST Databases as a Source for Molecular Markers: Lessons from Helianthus. Journal of Heredity, 2006, 97, 381-388.	1.0	174