Jannik C Meyer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9107162/jannik-c-meyer-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

161 27,809 166 52 h-index g-index citations papers 6.74 30,282 174 7.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
161	Towards Exotic Layered Materials: 2D Cuprous Iodide. <i>Advanced Materials</i> , 2021 , e2106922	24	3
160	Direct visualization of local deformations in suspended few-layer graphene membranes by coupled in situ atomic force and scanning electron microscopy. <i>Applied Physics Letters</i> , 2021 , 118, 103104	3.4	2
159	Chemistry at graphene edges in the electron microscope. 2D Materials, 2021, 8, 035023	5.9	4
158	Resolving few-layer antimonene/graphene heterostructures. <i>Npj 2D Materials and Applications</i> , 2021 , 5,	8.8	4
157	Atom-by-atom chemical identification from scanning transmission electron microscopy images in presence of noise and residual aberrations. <i>Ultramicroscopy</i> , 2021 , 227, 113292	3.1	O
156	Single indium atoms and few-atom indium clusters anchored onto graphene via silicon heteroatoms. <i>Microscopy and Microanalysis</i> , 2021 , 27, 3346-3347	0.5	
155	Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. <i>Nature Materials</i> , 2021 , 20, 202-207	27	35
154	Direct observation of layer-stacking and oriented wrinkles in multilayer hexagonal boron nitride. <i>2D Materials</i> , 2021 , 8, 024001	5.9	6
153	Single Indium Atoms and Few-Atom Indium Clusters Anchored onto Graphene via Silicon Heteroatoms. <i>ACS Nano</i> , 2021 , 15, 14373-14383	16.7	6
152	Process Pathway Controlled Evolution of Phase and Van-der-Waals Epitaxy in In/In2O3 on Graphene Heterostructures. <i>Advanced Functional Materials</i> , 2020 , 30, 2003300	15.6	4
151	New imaging modes for analyzing suspended ultra-thin membranes by double-tip scanning probe microscopy. <i>Scientific Reports</i> , 2020 , 10, 4839	4.9	4
150	Tailoring Electronic and Magnetic Properties of Graphene by Phosphorus Doping. <i>ACS Applied Materials & Acs Applied</i> (1997), 12, 34074-34085	9.5	9
149	Nano-Magnetite Aggregates in Red Soil on Low Magnetic Bedrock, Their Changes During Source-Sink Transfer, and Implications for Paleoclimate Studies. <i>Journal of Geophysical Research:</i> Solid Earth, 2020 , 125, e2020JB020588	3.6	3
148	Electrochemical Behavior of Graphene in a Deep Eutectic Solvent. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 40937-40948	9.5	13
147	Exclusive Substitutional Nitrogen Doping on Graphene Decoupled from an Insulating Substrate. Journal of Physical Chemistry C, 2020 , 124, 22150-22157	3.8	4
146	Quantifying Elastic and Inelastic Electron Irradiation Damage in Transmission Electron Microscopy of 2D Materials. <i>Microscopy and Microanalysis</i> , 2019 , 25, 454-455	0.5	0
145	Atomic-scale Chemical Manipulation of Materials in the Scanning Transmission Electron Microscope under Controlled Atmospheres. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1398-1399	0.5	

(2018-2019)

144	Direct visualization of the 3D structure of silicon impurities in graphene. <i>Applied Physics Letters</i> , 2019 , 114, 053102	3.4	12	
143	Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment. <i>Nature Communications</i> , 2019 , 10, 2815	17.4	32	
142	Engineering single-atom dynamics with electron irradiation. <i>Science Advances</i> , 2019 , 5, eaav2252	14.3	39	
141	Quantifying transmission electron microscopy irradiation effects using two-dimensional materials. <i>Nature Reviews Physics</i> , 2019 , 1, 397-405	23.6	45	
140	Scanning transmission electron microscopy under controlled low-pressure atmospheres. <i>Ultramicroscopy</i> , 2019 , 203, 76-81	3.1	18	•
139	Reactive intercalation and oxidation at the buried graphene-germanium interface. <i>APL Materials</i> , 2019 , 7, 071107	5.7	10	
138	Structural changes of CAST soot during a thermal@ptical measurement protocol. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 3503-3519	4	6	
137	Direct imaging of light-element impurities in graphene reveals triple-coordinated oxygen. <i>Nature Communications</i> , 2019 , 10, 4570	17.4	21	
136	Electron-Beam Manipulation of Lattice Impurities in Graphene and Single-Walled Carbon Nanotubes. <i>Microscopy and Microanalysis</i> , 2019 , 25, 938-939	0.5		
135	Efficient first principles simulation of electron scattering factors for transmission electron microscopy. <i>Ultramicroscopy</i> , 2019 , 197, 16-22	3.1	22	
134	High dose efficiency atomic resolution imaging via electron ptychography. <i>Ultramicroscopy</i> , 2019 , 196, 131-135	3.1	20	
133	Resolving the controversy. <i>Nature Materials</i> , 2018 , 17, 210-211	27	1	
132	Software electron counting for low-dose scanning transmission electron microscopy. <i>Ultramicroscopy</i> , 2018 , 188, 1-7	3.1	10	
131	Atomic Structure of Intrinsic and Electron-Irradiation-Induced Defects in MoTe. <i>Chemistry of Materials</i> , 2018 , 30, 1230-1238	9.6	35	
130	Chemical Oxidation of Graphite: Evolution of the Structure and Properties. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 929-935	3.8	30	
129	Insights into radiation damage from atomic resolution scanning transmission electron microscopy imaging of mono-layer CuPcCl films on graphene. <i>Scientific Reports</i> , 2018 , 8, 4813	4.9	14	
128	Atomic-Scale in Situ Observations of Crystallization and Restructuring Processes in Two-Dimensional MoS Films. <i>ACS Nano</i> , 2018 , 12, 8758-8769	16.7	39	
127	Atomic-Scale Deformations at the Interface of a Mixed-Dimensional van der Waals Heterostructure. <i>ACS Nano</i> , 2018 , 12, 8512-8519	16.7	13	

126	Reduced Graphene Oxide as a Monolithic Multifunctional Conductive Binder for Activated Carbon Supercapacitors. <i>ACS Omega</i> , 2018 , 3, 9246-9255	3.9	16
125	The Potential for Greater Clarity Cryo-Electron Microscopy via Ptychography. <i>Microscopy and Microanalysis</i> , 2018 , 24, 878-879	0.5	1
124	In situ control of graphene ripples and strain in the electron microscope. <i>Npj 2D Materials and Applications</i> , 2018 , 2,	8.8	13
123	Structure evolution of h.c.p./c.c.p. metal oxide interfaces in solid-state reactions. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2018 , 74, 466-480	1.7	3
122	Intrinsic core level photoemission of suspended monolayer graphene. <i>Physical Review Materials</i> , 2018 , 2,	3.2	9
121	High Dose Efficiency Atomic Resolution Phase Imaging with Electron Ptychography. <i>Microscopy and Microanalysis</i> , 2018 , 24, 196-197	0.5	
120	Revealing the 3D structure of graphene defects. 2D Materials, 2018, 5, 045029	5.9	12
119	Electron-Beam Manipulation of Silicon Dopants in Graphene. <i>Nano Letters</i> , 2018 , 18, 5319-5323	11.5	64
118	Unraveling the 3D Atomic Structure of a Suspended Graphene/hBN van der Waals Heterostructure. <i>Nano Letters</i> , 2017 , 17, 1409-1416	11.5	71
117	Single-atom spectroscopy of phosphorus dopants implanted into graphene. 2D Materials, 2017, 4, 021	015 9	54
116	Manipulating low-dimensional materials down to the level of single atoms with electron irradiation. <i>Ultramicroscopy</i> , 2017 , 180, 163-172	3.1	101
115	Introducing Overlapping Grain Boundaries in Chemical Vapor Deposited Hexagonal Boron Nitride		
	Monolayer Films. <i>ACS Nano</i> , 2017 , 11, 4521-4527	16.7	27
114	Automated Image Acquisition for Low-Dose STEM at Atomic Resolution. <i>Microscopy and Microanalysis</i> , 2017 , 23, 809-817	0.5	9
114	Automated Image Acquisition for Low-Dose STEM at Atomic Resolution. <i>Microscopy and</i>		
	Automated Image Acquisition for Low-Dose STEM at Atomic Resolution. <i>Microscopy and Microanalysis</i> , 2017 , 23, 809-817	0.5	9
113	Automated Image Acquisition for Low-Dose STEM at Atomic Resolution. <i>Microscopy and Microanalysis</i> , 2017 , 23, 809-817 Buckyball sandwiches. <i>Science Advances</i> , 2017 , 3, e1700176	0.5	9
113	Automated Image Acquisition for Low-Dose STEM at Atomic Resolution. <i>Microscopy and Microanalysis</i> , 2017 , 23, 809-817 Buckyball sandwiches. <i>Science Advances</i> , 2017 , 3, e1700176 Doping of metal-organic frameworks towards resistive sensing. <i>Scientific Reports</i> , 2017 , 7, 2439 Grain boundary-mediated nanopores in molybdenum disulfide grown by chemical vapor deposition.	0.5	9 38 34

108	Engineering and modifying two-dimensional materials by electron beams. MRS Bulletin, 2017, 42, 667-6	5762	48
107	Towards atomically precise manipulation of 2D nanostructures in the electron microscope. <i>2D Materials</i> , 2017 , 4, 042004	5.9	52
106	Cleaning graphene: Comparing heat treatments in air and in vacuum. <i>Physica Status Solidi - Rapid Research Letters</i> , 2017 , 11, 1700124	2.5	39
105	Analysis of Point Defects in Graphene Using Low Dose Scanning Transmission Electron Microscopy Imaging and Maximum Likelihood Reconstruction. <i>Physica Status Solidi (B): Basic Research</i> , 2017 , 254, 1700176	1.3	3
104	Understanding and Exploiting the Interaction of Electron Beams With Low-dimensional Materials - From Controlled Atomic-level Manipulation to Circumventing Radiation Damage. <i>Microscopy and Microanalysis</i> , 2017 , 23, 196-197	0.5	1
103	Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide. <i>Scientific Reports</i> , 2017 , 7, 4399	4.9	48
102	A new detection scheme for van der Waals heterostructures, imaging individual fullerenes between graphene sheets, and controlling the vacuum in scanning transmission electron microscopy. <i>Microscopy and Microanalysis</i> , 2017 , 23, 460-461	0.5	8
101	Growth, structure and stability of sputter-deposited MoS thin films. <i>Beilstein Journal of Nanotechnology</i> , 2017 , 8, 1115-1126	3	30
100	Interface migration mechanism on Corundum/Spinel/Periclase: atomic study via aberration-corrected STEM 2016 , 1178-1179		
99	Progress in structure recovery from low dose exposures: Mixed molecular adsorption, exploitation of symmetry and reconstruction from the minimum signal level. <i>Ultramicroscopy</i> , 2016 , 170, 60-68	3.1	6
98	The structure of a propagating MgAl2O4/MgO interface: linked atomic- and th-scale mechanisms of interface motion. <i>Philosophical Magazine</i> , 2016 , 96, 2488-2503	1.6	4
97	Vibrational Properties of a Two-Dimensional Silica Kagome Lattice. ACS Nano, 2016 , 10, 10929-10935	16.7	12
96	Isotope analysis in the transmission electron microscope. <i>Nature Communications</i> , 2016 , 7, 13040	17.4	47
95	Charge transfer sensitivity and dose efficiency with pixilated detectors and ptychographic phase contrast imaging in STEM 2016 , 721-722		1
94	Controlling Catalyst Bulk Reservoir Effects for Monolayer Hexagonal Boron Nitride CVD. <i>Nano Letters</i> , 2016 , 16, 1250-61	11.5	97
93	Visualising the strain distribution in suspended two-dimensional materials under local deformation. <i>Scientific Reports</i> , 2016 , 6, 28485	4.9	29
92	High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution. <i>Scientific Reports</i> , 2016 , 6, 38419	4.9	50
91	Nanopore fabrication and characterization by helium ion microscopy. <i>Applied Physics Letters</i> , 2016 , 108, 163103	3.4	72

90	Confined linear carbon chains as a route to bulk carbyne. <i>Nature Materials</i> , 2016 , 15, 634-9	27	250
89	Raman characterization of platinum diselenide thin films. 2D Materials, 2016, 3, 021004	5.9	138
88	Potassium intercalated multiwalled carbon nanotubes. <i>Carbon</i> , 2016 , 105, 90-95	10.4	14
87	In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites. Journal of Physical Chemistry C, 2016 , 120, 22571-22584	3.8	56
86	High-Performance Hybrid Electronic Devices from Layered PtSe Films Grown at Low Temperature. <i>ACS Nano</i> , 2016 , 10, 9550-9558	16.7	245
85	Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer Graphene. <i>Nano Letters</i> , 2015 , 15, 5944-9	11.5	73
84	Towards weighing individual atoms by high-angle scattering of electrons. <i>Ultramicroscopy</i> , 2015 , 151, 23-30	3.1	11
83	Size and Purity Control of HPHT Nanodiamonds down to 1 nm. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 27708-27720	3.8	112
82	An atomically thin matter-wave beamsplitter. <i>Nature Nanotechnology</i> , 2015 , 10, 845-8	28.7	36
81	Exploring Low-dimensional Carbon Materials by High-resolution Electron and Scanned Probe Microscopy. <i>Microscopy and Microanalysis</i> , 2015 , 21, 1147-1148	0.5	
80	Dimensional crossover in the quantum transport behaviour of the natural topological insulator Aleksite. <i>Scientific Reports</i> , 2015 , 5, 11691	4.9	5
79	Atomic Structure of Amorphous 2D Carbon Structures as Revealed by Scanning Transmission Electron Microscopy. <i>Microscopy and Microanalysis</i> , 2015 , 21, 997-998	0.5	
78	Bottom-up formation of robust gold carbide. <i>Scientific Reports</i> , 2015 , 5, 8891	4.9	9
77	A journey from order to disorder - atom by atom transformation from graphene to a 2D carbon glass. <i>Scientific Reports</i> , 2014 , 4, 4060	4.9	53
76	Using electron beams to investigate carbonaceous materials. <i>Comptes Rendus Physique</i> , 2014 , 15, 241-2	57.4	7
75	Silicon-carbon bond inversions driven by 60-keV electrons in graphene. <i>Physical Review Letters</i> , 2014 , 113, 115501	7.4	99
74	Atomic structure and energetics of large vacancies in graphene. <i>Physical Review B</i> , 2014 , 89,	3.3	27
73	Imaging atomic-level random walk of a point defect in graphene. <i>Nature Communications</i> , 2014 , 5, 3991	17.4	93

72	Electronic transport in composites of graphite oxide with carbon nanotubes. <i>Carbon</i> , 2014 , 72, 224-232	10.4	20
71	Atomic structure from large-area, low-dose exposures of materials: a new route to circumvent radiation damage. <i>Ultramicroscopy</i> , 2014 , 145, 13-21	3.1	28
70	Nitrogen controlled iron catalyst phase during carbon nanotube growth. <i>Applied Physics Letters</i> , 2014 , 105, 143111	3.4	20
69	Irradiation-induced Modifications and Beam-driven Dynamics in Low-dimensional Materials. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1726-1727	0.5	
68	Scaling properties of charge transport in polycrystalline graphene. <i>Nano Letters</i> , 2013 , 13, 1730-5	11.5	108
67	Probing from both sides: reshaping the graphene landscape via face-to-face dual-probe microscopy. <i>Nano Letters</i> , 2013 , 13, 1934-40	11.5	27
66	Combined study of the ground and unoccupied electronic states of graphite by electron energy-loss spectroscopy. <i>Journal of Applied Physics</i> , 2013 , 114, 183716	2.5	10
65	Optimum HRTEM image contrast at 20 kV and 80 kVexemplified by graphene. <i>Ultramicroscopy</i> , 2012 , 112, 39-46	3.1	40
64	From atoms to grains: Transmission electron microscopy of graphene. MRS Bulletin, 2012, 37, 1214-122	13.2	6
63	Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes. <i>ACS Nano</i> , 2012 , 6, 8837-46	16.7	101
62	The application of graphene as a sample support in transmission electron microscopy. <i>Solid State Communications</i> , 2012 , 152, 1375-1382	1.6	65
61	Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. <i>Physical Review Letters</i> , 2012 , 108, 196102	7.4	326
60	Mechanical properties of polycrystalline graphene based on a realistic atomistic model. <i>Physical Review B</i> , 2012 , 85,	3.3	148
59	Direct probe of linearly dispersing 2D interband plasmons in a free-standing graphene monolayer. <i>Europhysics Letters</i> , 2012 , 97, 57005	1.6	60
58	Direct imaging of a two-dimensional silica glass on graphene. <i>Nano Letters</i> , 2012 , 12, 1081-6	11.5	206
57	Graphene: Substrate preparation and introduction. <i>Journal of Structural Biology</i> , 2011 , 174, 234-8	3.4	66
56	From point defects in graphene to two-dimensional amorphous carbon. <i>Physical Review Letters</i> , 2011 , 106, 105505	7.4	582
55	Simulation of bonding effects in HRTEM images of light element materials. <i>Beilstein Journal of Nanotechnology</i> , 2011 , 2, 394-404	3	13

54	Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. <i>Nature Materials</i> , 2011 , 10, 209-15	27	237
53	Transmission electron microscopy at 20 kV for imaging and spectroscopy. <i>Ultramicroscopy</i> , 2011 , 111, 1239-46	3.1	164
52	Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation. <i>Physical Review B</i> , 2011 , 83,	3.3	199
51	Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale. <i>Nature Chemistry</i> , 2011 , 3, 732-7	17.6	74
50	Transformations of carbon adsorbates on graphene substrates under extreme heat. <i>Nano Letters</i> , 2011 , 11, 5123-7	11.5	73
49	Electronic properties and atomic structure of graphene oxide membranes. <i>Carbon</i> , 2011 , 49, 966-972	10.4	190
48	Graphene-based sample supports forin situhigh-resolution TEM electrical investigations. <i>Journal Physics D: Applied Physics</i> , 2011 , 44, 055502	3	13
47	Spatial dependence of Raman frequencies in ordered and disordered monolayer graphene. <i>Diamond and Related Materials</i> , 2010 , 19, 608-613	3.5	23
46	Electronic structure of carbon nanotubes with ultrahigh curvature. ACS Nano, 2010, 4, 4515-22	16.7	49
45	Atomic structure of reduced graphene oxide. <i>Nano Letters</i> , 2010 , 10, 1144-8	11.5	943
45	Atomic structure of reduced graphene oxide. <i>Nano Letters</i> , 2010 , 10, 1144-8 Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. <i>Journal of Structural Biology</i> , 2010 , 170, 152-6	3.4	943
	Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. <i>Journal of</i>		130
44	Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. <i>Journal of Structural Biology</i> , 2010 , 170, 152-6 Growth and properties of few-layer graphene prepared by chemical vapor deposition. <i>Carbon</i> , 2010	3.4	130
44	Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. <i>Journal of Structural Biology</i> , 2010 , 170, 152-6 Growth and properties of few-layer graphene prepared by chemical vapor deposition. <i>Carbon</i> , 2010 , 48, 1088-1094 Probing the structure of single-walled carbon nanotubes by resonant Raman scattering. <i>Physica</i>	3.4	130
44 43 42	Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. <i>Journal of Structural Biology</i> , 2010 , 170, 152-6 Growth and properties of few-layer graphene prepared by chemical vapor deposition. <i>Carbon</i> , 2010 , 48, 1088-1094 Probing the structure of single-walled carbon nanotubes by resonant Raman scattering. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2762-2767 Electronic structure and radial breathing mode for carbon nanotubes with ultra-high curvature.	3·4 10·4 1·3	130 294 11
44 43 42 41	Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. <i>Journal of Structural Biology</i> , 2010 , 170, 152-6 Growth and properties of few-layer graphene prepared by chemical vapor deposition. <i>Carbon</i> , 2010 , 48, 1088-1094 Probing the structure of single-walled carbon nanotubes by resonant Raman scattering. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2762-2767 Electronic structure and radial breathing mode for carbon nanotubes with ultra-high curvature. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2774-2778 Growth and properties of chemically modified graphene. <i>Physica Status Solidi (B): Basic Research</i> ,	3.4 10.4 1.3	130 294 11
44 43 42 41 40	Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. <i>Journal of Structural Biology</i> , 2010 , 170, 152-6 Growth and properties of few-layer graphene prepared by chemical vapor deposition. <i>Carbon</i> , 2010 , 48, 1088-1094 Probing the structure of single-walled carbon nanotubes by resonant Raman scattering. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2762-2767 Electronic structure and radial breathing mode for carbon nanotubes with ultra-high curvature. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2774-2778 Growth and properties of chemically modified graphene. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2915-2919 Facets of nanotube synthesis: High-resolution transmission electron microscopy study and density	3.4 10.4 1.3 1.3	130 294 11 5

(2007-2009)

36	Indexing of individual single-walled carbon nanotubes from Raman spectroscopy. <i>Physical Review B</i> , 2009 , 80,	3.3	47
35	Electron Microscopic Studies with Graphene. Microscopy and Microanalysis, 2009, 15, 126-127	0.5	5
34	From graphene constrictions to single carbon chains. New Journal of Physics, 2009, 11, 083019	2.9	260
33	Graphene at the edge: stability and dynamics. <i>Science</i> , 2009 , 323, 1705-8	33.3	1042
32	Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. <i>Nano Letters</i> , 2009 , 9, 2683-9	11.5	436
31	Imaging and dynamics of light atoms and molecules on graphene. <i>Nature</i> , 2008 , 454, 319-22	50.4	426
30	Direct imaging of lattice atoms and topological defects in graphene membranes. <i>Nano Letters</i> , 2008 , 8, 3582-6	11.5	958
29	The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. <i>Applied Physics Letters</i> , 2008 , 92, 133107	3.4	781
28	Hydrocarbon lithography on graphene membranes. Applied Physics Letters, 2008, 92, 123110	3.4	227
27	Near-edge x-ray absorption fine-structure investigation of graphene. <i>Physical Review Letters</i> , 2008 , 101, 066806	7.4	175
26	Detecting and resolving individual adatoms, vacancies, and their dynamics on graphene membranes 2008 , 37-38		
25	On the roughness of single- and bi-layer graphene membranes. <i>Solid State Communications</i> , 2007 , 143, 101-109	1.6	451
24	Effect of fluorination on electrical properties of single walled carbon nanotubes and C60 peapods in networks. <i>Current Applied Physics</i> , 2007 , 7, 42-46	2.6	23
23	A study of the effect of different catalysts for the efficient CVD growth of carbon nanotubes on silicon substrates. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2007 , 37, 6-10	3	25
22	Raman spectroscopy of (n,m)-identified individual single-walled carbon nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 3986-3991	1.3	11
21	Investigation of the shift of Raman modes of graphene flakes. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 4143-4146	1.3	24
20	The structure of suspended graphene sheets. <i>Nature</i> , 2007 , 446, 60-3	50.4	4019
19	Transport current improvements ofin situMgB2tapes by the addition of carbon nanotubes, silicon carbide or graphite. <i>Superconductor Science and Technology</i> , 2007 , 20, 105-111	3.1	28

18	Synthesis of individual single-walled carbon nanotube bridges controlled by support micromachining. <i>Journal of Micromechanics and Microengineering</i> , 2007 , 17, 603-608	2	27
17	E33 and E44 optical transitions in semiconducting single-walled carbon nanotubes: Electron diffraction and Raman experiments. <i>Physical Review B</i> , 2007 , 75,	3.3	41
16	RAMAN SPECTROSCOPY OF ISOLATED SINGLE-WALLED CARBON NANOTUBES 2006 , 121-122		1
15	Selective growth of large chiral angle single-walled carbon nanotubes. <i>Diamond and Related Materials</i> , 2006 , 15, 1019-1022	3.5	5
14	Raman active phonons of identified semiconducting single-walled carbon nanotubes. <i>Physical Review Letters</i> , 2006 , 96, 257401	7.4	70
13	Transport and TEM on dysprosium metallofullerene peapods. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3430-3434	1.3	19
12	Progress in single-walled carbon nanotube based nanoelectromechanical systems. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3500-3504	1.3	3
11	Electron diffraction analysis of individual single-walled carbon nanotubes. <i>Ultramicroscopy</i> , 2006 , 106, 176-90	3.1	67
10	Raman spectrum of graphene and graphene layers. <i>Physical Review Letters</i> , 2006 , 97, 187401	7.4	11029
9	Vanishing of the Breit-Wigner-Fano component in individual single-wall carbon nanotubes. <i>Physical Review Letters</i> , 2005 , 94, 237401	7.4	48
8	Raman modes of index-identified freestanding single-walled carbon nanotubes. <i>Physical Review Letters</i> , 2005 , 95, 217401	7.4	162
7	Growth and physical properties of individual single-walled carbon nanotubes. <i>Diamond and Related Materials</i> , 2005 , 14, 1426-1431	3.5	13
6	Single-molecule torsional pendulum. <i>Science</i> , 2005 , 309, 1539-41	33.3	122
5	Transmission electron microscopy and transistor characteristics of the same carbon nanotube. <i>Applied Physics Letters</i> , 2004 , 85, 2911-2913	3.4	25
4	Versatile Synthesis of Individual Single-Walled Carbon Nanotubes from Nickel Nanoparticles for the Study of Their Physical Properties. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 17112-17118	3.4	56
3	Nano-tomography based on hard X-ray microscopy with refractive lenses. <i>European Physical Journal Special Topics</i> , 2003 , 104, 271-271		2
2	Parabolic refractive X-ray lenses. <i>Journal of Synchrotron Radiation</i> , 2002 , 9, 119-24	2.4	55
1	Nanotomography based on hard x-ray microscopy with refractive lenses. <i>Applied Physics Letters</i> , 2002 , 81, 1527-1529	3.4	55