Jannik C Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9107162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006, 97, 187401.	2.9	12,689
2	The structure of suspended graphene sheets. Nature, 2007, 446, 60-63.	13.7	4,511
3	Graphene at the Edge: Stability and Dynamics. Science, 2009, 323, 1705-1708.	6.0	1,153
4	Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes. Nano Letters, 2008, 8, 3582-3586.	4.5	1,090
5	Atomic Structure of Reduced Graphene Oxide. Nano Letters, 2010, 10, 1144-1148.	4.5	1,076
6	The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Applied Physics Letters, 2008, 92, .	1.5	895
7	From Point Defects in Graphene to Two-Dimensional Amorphous Carbon. Physical Review Letters, 2011, 106, 105505.	2.9	675
8	On the roughness of single- and bi-layer graphene membranes. Solid State Communications, 2007, 143, 101-109.	0.9	530
9	Selective Sputtering and Atomic Resolution Imaging of Atomically Thin Boron Nitride Membranes. Nano Letters, 2009, 9, 2683-2689.	4.5	488
10	Imaging and dynamics of light atoms and molecules on graphene. Nature, 2008, 454, 319-322.	13.7	475
11	Accurate Measurement of Electron Beam Induced Displacement Cross Sections for Single-Layer Graphene. Physical Review Letters, 2012, 108, 196102.	2.9	383
12	Confined linear carbon chains as a route to bulkÂcarbyne. Nature Materials, 2016, 15, 634-639.	13.3	341
13	Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon, 2010, 48, 1088-1094.	5.4	333
14	High-Performance Hybrid Electronic Devices from Layered PtSe ₂ Films Grown at Low Temperature. ACS Nano, 2016, 10, 9550-9558.	7.3	310
15	From graphene constrictions to single carbon chains. New Journal of Physics, 2009, 11, 083019.	1.2	280
16	Experimental analysis of charge redistribution dueÂto chemical bonding by high-resolution transmission electron microscopy. Nature Materials, 2011, 10, 209-215.	13.3	270
17	Hydrocarbon lithography on graphene membranes. Applied Physics Letters, 2008, 92, .	1.5	252
18	Direct Imaging of a Two-Dimensional Silica Class on Graphene. Nano Letters, 2012, 12, 1081-1086.	4.5	236

#	Article	IF	CITATIONS
19	Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation. Physical Review B, 2011, 83, .	1.1	226
20	Electronic properties and atomic structure of graphene oxide membranes. Carbon, 2011, 49, 966-972.	5.4	223
21	Near-Edge X-Ray Absorption Fine-Structure Investigation of Graphene. Physical Review Letters, 2008, 101, 066806.	2.9	194
22	Mechanical properties of polycrystalline graphene based on a realistic atomistic model. Physical Review B, 2012, 85, .	1.1	181
23	Transmission electron microscopy at 20kV for imaging and spectroscopy. Ultramicroscopy, 2011, 111, 1239-1246.	0.8	178
24	Raman characterization of platinum diselenide thin films. 2D Materials, 2016, 3, 021004.	2.0	172
25	Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes. Physical Review Letters, 2005, 95, 217401.	2.9	169
26	Graphene oxide: A substrate for optimizing preparations of frozen-hydrated samples. Journal of Structural Biology, 2010, 170, 152-156.	1.3	155
27	Size and Purity Control of HPHT Nanodiamonds down to 1 nm. Journal of Physical Chemistry C, 2015, 119, 27708-27720.	1.5	144
28	Manipulating low-dimensional materials down to the level of single atoms with electron irradiation. Ultramicroscopy, 2017, 180, 163-172.	0.8	135
29	Single-Molecule Torsional Pendulum. Science, 2005, 309, 1539-1541.	6.0	134
30	Scaling Properties of Charge Transport in Polycrystalline Graphene. Nano Letters, 2013, 13, 1730-1735.	4.5	126
31	Silicon–Carbon Bond Inversions Driven by 60-keV Electrons in Graphene. Physical Review Letters, 2014, 113, 115501.	2.9	123
32	Atomistic Description of Electron Beam Damage in Nitrogen-Doped Graphene and Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 8837-8846.	7.3	119
33	Controlling Catalyst Bulk Reservoir Effects for Monolayer Hexagonal Boron Nitride CVD. Nano Letters, 2016, 16, 1250-1261.	4.5	114
34	Imaging atomic-level random walk of a point defect in graphene. Nature Communications, 2014, 5, 3991.	5.8	103
35	Electron-Beam Manipulation of Silicon Dopants in Graphene. Nano Letters, 2018, 18, 5319-5323.	4.5	98
36	Nanopore fabrication and characterization by helium ion microscopy. Applied Physics Letters, 2016, 108, .	1.5	96

#	Article	IF	CITATIONS
37	Parabolic refractive X-ray lenses. Journal of Synchrotron Radiation, 2002, 9, 119-124.	1.0	87
38	Toward Two-Dimensional All-Carbon Heterostructures via Ion Beam Patterning of Single-Layer Graphene. Nano Letters, 2015, 15, 5944-5949.	4.5	85
39	Graphene: Substrate preparation and introduction. Journal of Structural Biology, 2011, 174, 234-238.	1.3	84
40	Unraveling the 3D Atomic Structure of a Suspended Graphene/hBN van der Waals Heterostructure. Nano Letters, 2017, 17, 1409-1416.	4.5	84
41	Transformations of Carbon Adsorbates on Graphene Substrates under Extreme Heat. Nano Letters, 2011, 11, 5123-5127.	4.5	83
42	Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale. Nature Chemistry, 2011, 3, 732-737.	6.6	83
43	The application of graphene as a sample support in transmission electron microscopy. Solid State Communications, 2012, 152, 1375-1382.	0.9	80
44	In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites. Journal of Physical Chemistry C, 2016, 120, 22571-22584.	1.5	80
45	Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nature Materials, 2021, 20, 202-207.	13.3	80
46	Quantifying transmission electron microscopy irradiation effects using two-dimensional materials. Nature Reviews Physics, 2019, 1, 397-405.	11.9	79
47	Single-atom spectroscopy of phosphorus dopants implanted into graphene. 2D Materials, 2017, 4, 021013.	2.0	77
48	Raman Active Phonons of Identified Semiconducting Single-Walled Carbon Nanotubes. Physical Review Letters, 2006, 96, 257401.	2.9	74
49	Towards atomically precise manipulation of 2D nanostructures in the electron microscope. 2D Materials, 2017, 4, 042004.	2.0	73
50	Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide. Scientific Reports, 2017, 7, 4399.	1.6	73
51	Electron diffraction analysis of individual single-walled carbon nanotubes. Ultramicroscopy, 2006, 106, 176-190.	0.8	71
52	Direct probe of linearly dispersing 2D interband plasmons in a free-standing graphene monolayer. Europhysics Letters, 2012, 97, 57005.	0.7	68
53	A journey from order to disorder — Atom by atom transformation from graphene to a 2D carbon glass. Scientific Reports, 2014, 4, 4060.	1.6	67
54	Versatile Synthesis of Individual Single-Walled Carbon Nanotubes from Nickel Nanoparticles for the Study of Their Physical Properties. Journal of Physical Chemistry B, 2004, 108, 17112-17118.	1.2	65

#	Article	IF	CITATIONS
55	Isotope analysis in the transmission electron microscope. Nature Communications, 2016, 7, 13040.	5.8	64
56	Nanotomography based on hard x-ray microscopy with refractive lenses. Applied Physics Letters, 2002, 81, 1527-1529.	1.5	63
57	High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution. Scientific Reports, 2016, 6, 38419.	1.6	63
58	Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment. Nature Communications, 2019, 10, 2815.	5.8	63
59	Engineering and modifying two-dimensional materials by electron beams. MRS Bulletin, 2017, 42, 667-676.	1.7	62
60	Cleaning graphene: Comparing heat treatments in air and in vacuum. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700124.	1.2	61
61	Engineering single-atom dynamics with electron irradiation. Science Advances, 2019, 5, eaav2252.	4.7	61
62	Electronic Structure of Carbon Nanotubes with Ultrahigh Curvature. ACS Nano, 2010, 4, 4515-4522.	7.3	57
63	Atomic Structure of Intrinsic and Electron-Irradiation-Induced Defects in MoTe ₂ . Chemistry of Materials, 2018, 30, 1230-1238.	3.2	56
64	Vanishing of the Breit-Wigner-Fano Component in Individual Single-Wall Carbon Nanotubes. Physical Review Letters, 2005, 94, 237401.	2.9	51
65	Atomic-Scale <i>in Situ</i> Observations of Crystallization and Restructuring Processes in Two-Dimensional MoS ₂ Films. ACS Nano, 2018, 12, 8758-8769.	7.3	51
66	Buckyball sandwiches. Science Advances, 2017, 3, e1700176.	4.7	50
67	Indexing of individual single-walled carbon nanotubes from Raman spectroscopy. Physical Review B, 2009, 80, .	1.1	47
68	Doping of metal–organic frameworks towards resistive sensing. Scientific Reports, 2017, 7, 2439.	1.6	45
69	Growth, structure and stability of sputter-deposited MoS ₂ thin films. Beilstein Journal of Nanotechnology, 2017, 8, 1115-1126.	1.5	44
70	E33andE44optical transitions in semiconducting single-walled carbon nanotubes: Electron diffraction and Raman experiments. Physical Review B, 2007, 75, .	1.1	42
71	An atomically thin matter-wave beamsplitter. Nature Nanotechnology, 2015, 10, 845-848.	15.6	41
72	Optimum HRTEM image contrast at 20 kV and 80 kV—Exemplified by graphene. Ultramicroscopy, 2012, 112, 39-46.	0.8	40

#	Article	IF	CITATIONS
73	High dose efficiency atomic resolution imaging via electron ptychography. Ultramicroscopy, 2019, 196, 131-135.	0.8	40
74	Direct imaging of light-element impurities in graphene reveals triple-coordinated oxygen. Nature Communications, 2019, 10, 4570.	5.8	39
75	Chemical Oxidation of Graphite: Evolution of the Structure and Properties. Journal of Physical Chemistry C, 2018, 122, 929-935.	1.5	38
76	Visualising the strain distribution in suspended two-dimensional materials under local deformation. Scientific Reports, 2016, 6, 28485.	1.6	37
77	Introducing Overlapping Grain Boundaries in Chemical Vapor Deposited Hexagonal Boron Nitride Monolayer Films. ACS Nano, 2017, 11, 4521-4527.	7.3	35
78	Polarization-dependent C K near-edge X-ray absorption fine-structure of graphene. Chemical Physics Letters, 2009, 475, 269-271.	1.2	33
79	Probing from Both Sides: Reshaping the Graphene Landscape via Face-to-Face Dual-Probe Microscopy. Nano Letters, 2013, 13, 1934-1940.	4.5	31
80	Grain boundary-mediated nanopores in molybdenum disulfide grown by chemical vapor deposition. Nanoscale, 2017, 9, 1591-1598.	2.8	31
81	Transport current improvements ofin situMgB2tapes by the addition of carbon nanotubes, silicon carbide or graphite. Superconductor Science and Technology, 2007, 20, 105-111.	1.8	30
82	Atomic structure and energetics of large vacancies in graphene. Physical Review B, 2014, 89, .	1.1	30
83	Atomic structure from large-area, low-dose exposures of materials: A new route to circumvent radiation damage. Ultramicroscopy, 2014, 145, 13-21.	0.8	30
84	Synthesis of individual single-walled carbon nanotube bridges controlled by support micromachining. Journal of Micromechanics and Microengineering, 2007, 17, 603-608.	1.5	29
85	Efficient first principles simulation of electron scattering factors for transmission electron microscopy. Ultramicroscopy, 2019, 197, 16-22.	0.8	29
86	Electrochemical Behavior of Graphene in a Deep Eutectic Solvent. ACS Applied Materials & Interfaces, 2020, 12, 40937-40948.	4.0	29
87	Toward Exotic Layered Materials: 2D Cuprous Iodide. Advanced Materials, 2022, 34, e2106922.	11.1	28
88	Transmission electron microscopy and transistor characteristics of the same carbon nanotube. Applied Physics Letters, 2004, 85, 2911-2913.	1.5	27
89	A study of the effect of different catalysts for the efficient CVD growth of carbon nanotubes on silicon substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 6-10.	1.3	27
90	Effect of fluorination on electrical properties of single walled carbon nanotubes and C60 peapods in networks. Current Applied Physics, 2007, 7, 42-46.	1.1	26

#	Article	IF	CITATIONS
91	Facets of nanotube synthesis: High-resolution transmission electron microscopy study and density functional theory calculations. Physical Review B, 2009, 79, .	1.1	26
92	Investigation of the shift of Raman modes of graphene flakes. Physica Status Solidi (B): Basic Research, 2007, 244, 4143-4146.	0.7	24
93	Spatial dependence of Raman frequencies in ordered and disordered monolayer graphene. Diamond and Related Materials, 2010, 19, 608-613.	1.8	24
94	Scanning transmission electron microscopy under controlled low-pressure atmospheres. Ultramicroscopy, 2019, 203, 76-81.	0.8	24
95	Nitrogen controlled iron catalyst phase during carbon nanotube growth. Applied Physics Letters, 2014, 105, .	1.5	22
96	Electronic transport in composites of graphite oxide with carbon nanotubes. Carbon, 2014, 72, 224-232.	5.4	22
97	Graphene-based nanolaminates as ultra-high permeation barriers. Npj 2D Materials and Applications, 2017, 1, .	3.9	21
98	Insights into radiation damage from atomic resolution scanning transmission electron microscopy imaging of mono-layer CuPcCl16 films on graphene. Scientific Reports, 2018, 8, 4813.	1.6	21
99	Reduced Graphene Oxide as a Monolithic Multifunctional Conductive Binder for Activated Carbon Supercapacitors. ACS Omega, 2018, 3, 9246-9255.	1.6	21
100	Transport and TEM on dysprosium metallofullerene peapods. Physica Status Solidi (B): Basic Research, 2006, 243, 3430-3434.	0.7	20
101	Tailoring Electronic and Magnetic Properties of Graphene by Phosphorus Doping. ACS Applied Materials & Interfaces, 2020, 12, 34074-34085.	4.0	20
102	Atomic-Scale Deformations at the Interface of a Mixed-Dimensional van der Waals Heterostructure. ACS Nano, 2018, 12, 8512-8519.	7.3	19
103	Single Indium Atoms and Few-Atom Indium Clusters Anchored onto Graphene via Silicon Heteroatoms. ACS Nano, 2021, 15, 14373-14383.	7.3	19
104	Vibrational Properties of a Two-Dimensional Silica Kagome Lattice. ACS Nano, 2016, 10, 10929-10935.	7.3	18
105	Software electron counting for low-dose scanning transmission electron microscopy. Ultramicroscopy, 2018, 188, 1-7.	0.8	18
106	Pacilé <i>etÂal.</i> Reply:. Physical Review Letters, 2009, 102, .	2.9	17
107	Graphene-based sample supports for in situ high-resolution TEM electrical investigations. Journal Physics D: Applied Physics, 2011, 44, 055502.	1.3	17
108	In situ control of graphene ripples and strain in the electron microscope. Npj 2D Materials and Applications, 2018, 2, .	3.9	16

#	Article	IF	CITATIONS
109	Reactive intercalation and oxidation at the buried graphene-germanium interface. APL Materials, 2019, 7, .	2.2	16
110	Direct observation of layer-stacking and oriented wrinkles in multilayer hexagonal boron nitride. 2D Materials, 2021, 8, 024001.	2.0	16
111	Growth and physical properties of individual single-walled carbon nanotubes. Diamond and Related Materials, 2005, 14, 1426-1431.	1.8	15
112	Growth and properties of chemically modified graphene. Physica Status Solidi (B): Basic Research, 2010, 247, 2915-2919.	0.7	15
113	Potassium intercalated multiwalled carbon nanotubes. Carbon, 2016, 105, 90-95.	5.4	15
114	Direct visualization of the 3D structure of silicon impurities in graphene. Applied Physics Letters, 2019, 114, .	1.5	15
115	Intrinsic core level photoemission of suspended monolayer graphene. Physical Review Materials, 2018, 2, .	0.9	15
116	Simulation of bonding effects in HRTEM images of light element materials. Beilstein Journal of Nanotechnology, 2011, 2, 394-404.	1.5	14
117	Revealing the 3D structure of graphene defects. 2D Materials, 2018, 5, 045029.	2.0	14
118	Chemistry at graphene edges in the electron microscope. 2D Materials, 2021, 8, 035023.	2.0	14
119	Raman spectroscopy of (<i>n</i> , <i>m</i>)â€identified individual singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 3986-3991.	0.7	12
120	Combined study of the ground and unoccupied electronic states of graphite by electron energy-loss spectroscopy. Journal of Applied Physics, 2013, 114, .	1.1	12
121	Towards weighing individual atoms by high-angle scattering of electrons. Ultramicroscopy, 2015, 151, 23-30.	0.8	12
122	Probing the structure of singleâ€walled carbon nanotubes by resonant Raman scattering. Physica Status Solidi (B): Basic Research, 2010, 247, 2762-2767.	0.7	11
123	Bottom-up formation of robust gold carbide. Scientific Reports, 2015, 5, 8891.	1.6	11
124	Resolving few-layer antimonene/graphene heterostructures. Npj 2D Materials and Applications, 2021, 5,	3.9	11
125	From atoms to grains: Transmission electron microscopy of graphene. MRS Bulletin, 2012, 37, 1214-1221.	1.7	10
126	Automated Image Acquisition for Low-Dose STEM at Atomic Resolution. Microscopy and Microanalysis, 2017, 23, 809-817.	0.2	10

#	Article	IF	CITATIONS
127	Highly stable amorphous zinc tin oxynitride thin film transistors under positive bias stress. Applied Physics Letters, 2017, 111, 122109.	1.5	10
128	Structural changes of CAST soot during a thermal–optical measurement protocol. Atmospheric Measurement Techniques, 2019, 12, 3503-3519.	1.2	10
129	Process Pathway Controlled Evolution of Phase and Vanâ€derâ€Waals Epitaxy in In/In ₂ O ₃ on Graphene Heterostructures. Advanced Functional Materials, 2020, 30, 2003300.	7.8	9
130	Using electron beams to investigate carbonaceous materials. Comptes Rendus Physique, 2014, 15, 241-257.	0.3	8
131	Progress in structure recovery from low dose exposures: Mixed molecular adsorption, exploitation of symmetry and reconstruction from the minimum signal level. Ultramicroscopy, 2016, 170, 60-68.	0.8	8
132	A new detection scheme for van der Waals heterostructures, imaging individual fullerenes between graphene sheets, and controlling the vacuum in scanning transmission electron microscopy. Microscopy and Microanalysis, 2017, 23, 460-461.	0.2	8
133	Selective growth of large chiral angle single-walled carbon nanotubes. Diamond and Related Materials, 2006, 15, 1019-1022.	1.8	7
134	The structure of a propagating MgAl ₂ O ₄ /MgO interface: linked atomic- and μm-scale mechanisms of interface motion. Philosophical Magazine, 2016, 96, 2488-2503.	0.7	6
135	Nanoâ€Magnetite Aggregates in Red Soil on Low Magnetic Bedrock, Their Changes During Sourceâ€6ink Transfer, and Implications for Paleoclimate Studies. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020588.	1.4	6
136	Aligned Stacking of Nanopatterned 2DÂMaterials for High-Resolution 3DÂDevice Fabrication. ACS Nano, 2022, 16, 1836-1846.	7.3	6
137	Electron Microscopic Studies with Graphene. Microscopy and Microanalysis, 2009, 15, 126-127.	0.2	5
138	Electronic structure and radial breathing mode for carbon nanotubes with ultraâ€high curvature. Physica Status Solidi (B): Basic Research, 2010, 247, 2774-2778.	0.7	5
139	Dimensional crossover in the quantum transport behaviour of the natural topological insulator Aleksite. Scientific Reports, 2015, 5, 11691.	1.6	5
140	Structure evolution of h.c.p./c.c.p. metal oxide interfaces in solid-state reactions. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, 466-480.	0.0	5
141	Exclusive Substitutional Nitrogen Doping on Graphene Decoupled from an Insulating Substrate. Journal of Physical Chemistry C, 2020, 124, 22150-22157.	1.5	5
142	New imaging modes for analyzing suspended ultra-thin membranes by double-tip scanning probe microscopy. Scientific Reports, 2020, 10, 4839.	1.6	5
143	Nano-tomography based on hard X-ray microscopy with refractive lenses. European Physical Journal Special Topics, 2003, 104, 271-271.	0.2	5
144	Progress in single-walled carbon nanotube based nanoelectromechanical systems. Physica Status Solidi (B): Basic Research, 2006, 243, 3500-3504.	0.7	4

#	Article	IF	CITATIONS
145	Atom-by-atom chemical identification from scanning transmission electron microscopy images in presence of noise and residual aberrations. Ultramicroscopy, 2021, 227, 113292.	0.8	4
146	Analysis of Point Defects in Graphene Using Low Dose Scanning Transmission Electron Microscopy Imaging and Maximum Likelihood Reconstruction. Physica Status Solidi (B): Basic Research, 2017, 254, 1700176.	0.7	3
147	Direct visualization of local deformations in suspended few-layer graphene membranes by coupled in situ atomic force and scanning electron microscopy. Applied Physics Letters, 2021, 118, 103104.	1.5	3
148	Freestanding nanostructures for TEM-combined investigations of nanotubes. AIP Conference Proceedings, 2004, , .	0.3	1
149	RAMAN SPECTROSCOPY OF ISOLATED SINGLE-WALLED CARBON NANOTUBES. , 2006, , 121-122.		1
150	Understanding and Exploiting the Interaction of Electron Beams With Low-dimensional Materials - From Controlled Atomic-level Manipulation to Circumventing Radiation Damage. Microscopy and Microanalysis, 2017, 23, 196-197.	0.2	1
151	Resolving the controversy. Nature Materials, 2018, 17, 210-211.	13.3	1
152	The Potential for Greater Clarity Cryo-Electron Microscopy via Ptychography. Microscopy and Microanalysis, 2018, 24, 878-879.	0.2	1
153	Quantifying Elastic and Inelastic Electron Irradiation Damage in Transmission Electron Microscopy of 2D Materials. Microscopy and Microanalysis, 2019, 25, 454-455.	0.2	1
154	Electrical Transport in Dy Metallofullerene Peapods. AIP Conference Proceedings, 2004, , .	0.3	0
155	Novel freestanding nanotube devices for combining TEM and electron diffraction with Raman and Transport. AIP Conference Proceedings, 2005, , .	0.3	Ο
156	Transport and TEM on the same individual carbon nanotubes and peapods. AIP Conference Proceedings, 2005, , .	0.3	0
157	Growth of Large Transparent and Conducting Graphene Sheets Using Chemical Vapor Deposition. ECS Transactions, 2009, 25, 59-61.	0.3	Ο
158	Irradiation-induced Modifications and Beam-driven Dynamics in Low-dimensional Materials. Microscopy and Microanalysis, 2014, 20, 1726-1727.	0.2	0
159	Exploring Low-dimensional Carbon Materials by High-resolution Electron and Scanned Probe Microscopy. Microscopy and Microanalysis, 2015, 21, 1147-1148.	0.2	Ο
160	Atomic Structure of Amorphous 2D Carbon Structures as Revealed by Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2015, 21, 997-998.	0.2	0
161	High Dose Efficiency Atomic Resolution Phase Imaging with Electron Ptychography. Microscopy and Microanalysis, 2018, 24, 196-197.	0.2	0
162	Electron-Beam Manipulation of Lattice Impurities in Graphene and Single-Walled Carbon Nanotubes. Microscopy and Microanalysis, 2019, 25, 938-939.	0.2	0

#	Article	IF	CITATIONS
163	Atomic-scale Chemical Manipulation of Materials in the Scanning Transmission Electron Microscope under Controlled Atmospheres. Microscopy and Microanalysis, 2019, 25, 1398-1399.	0.2	0
164	Single indium atoms and few-atom indium clusters anchored onto graphene via silicon heteroatoms. Microscopy and Microanalysis, 2021, 27, 3346-3347.	0.2	0
165	The physics of nano-carbons explored by high-resolution transmission electron microscopy. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C122-C123.	0.3	0