
Sebastien Rigali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9107004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The virulome of Streptomyces scabiei in response to cello-oligosaccharide elicitors. Microbial Genomics, 2022, 8, .	1.0	8
2	Old Enzyme, New Role: The β-Glucosidase BglC of Streptomyces scabiei Interferes with the Plant Defense Mechanism by Hydrolyzing Scopolin. Biophysica, 2022, 2, 1-7.	0.6	6
3	Structure of New Ferroverdins Recruiting Unconventional Ferrous Iron Chelating Agents. Biomolecules, 2022, 12, 752.	1.8	3
4	Identification of Novel Rotihibin Analogues in Streptomyces scabies , Including Discovery of Its Biosynthetic Gene Cluster. Microbiology Spectrum, 2021, 9, e0057121.	1.2	14
5	Prodiginines Postpone the Onset of Sporulation in Streptomyces coelicolor. Antibiotics, 2020, 9, 847.	1.5	8
6	Deletion of bglC triggers a genetic compensation response by awakening the expression of alternative beta-glucosidase. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194615.	0.9	14
7	On the Risks of Phylogeny-Based Strain Prioritization for Drug Discovery: Streptomyces lunaelactis as a Case Study. Biomolecules, 2020, 10, 1027.	1.8	18
8	A Single Biosynthetic Gene Cluster Is Responsible for the Production of Bagremycin Antibiotics and Ferroverdin Iron Chelators. MBio, 2019, 10, .	1.8	40
9	Self-resistance mechanisms to DNA-damaging antitumor antibiotics in actinobacteria. Current Opinion in Microbiology, 2018, 45, 100-108.	2.3	32
10	Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochemical Pharmacology, 2018, 153, 24-34.	2.0	64
11	Contribution of the βâ€glucosidase BglC to the onset of the pathogenic lifestyle of <i>Streptomyces scabies</i> . Molecular Plant Pathology, 2018, 19, 1480-1490.	2.0	19
12	Proteomic Response to Thaxtomin Phytotoxin Elicitor Cellobiose and to Deletion of Cellulose Utilization Regulator CebR in <i>Streptomyces scabies</i> . Journal of Proteome Research, 2018, 17, 3837-3852.	1.8	14
13	High-Throughput Sequencing Analysis of the Actinobacterial Spatial Diversity in Moonmilk Deposits. Antibiotics, 2018, 7, 27.	1.5	22
14	Isolation, Characterization, and Antibacterial Activity of Hard-to-Culture Actinobacteria from Cave Moonmilk Deposits. Antibiotics, 2018, 7, 28.	1.5	68
15	Complete Genome Sequence of Streptomyces lunaelactis MM109 T , Isolated from Cave Moonmilk Deposits. Genome Announcements, 2018, 6, .	0.8	8
16	NgcE ^{Sco} Acts as a Lower-Affinity Binding Protein of an ABC Transporter for the Uptake of <i>N,Nâ€2</i> -Diacetylchitobiose in <i>Streptomyces coelicolor</i> A3(2). Microbes and Environments, 2018, 33, 272-281.	0.7	8
17	Production of Prodiginines Is Part of a Programmed Cell Death Process in Streptomyces coelicolor. Frontiers in Microbiology, 2018, 9, 1742.	1.5	47
18	Tracking the Subtle Mutations Driving Host Sensing by the Plant Pathogen <i>Streptomyces scabies</i> . MSphere, 2017, 2, .	1.3	15

SEBASTIEN RIGALI

#	Article	IF	CITATIONS
19	Intertwined Precursor Supply during Biosynthesis of the Catecholate–Hydroxamate Siderophores Qinichelins in <i>Streptomyces</i> sp. MBT76. ACS Chemical Biology, 2017, 12, 2756-2766.	1.6	33
20	Assessment of the Potential Role of Streptomyces in Cave Moonmilk Formation. Frontiers in Microbiology, 2017, 8, 1181.	1.5	63
21	A Phenotypic and Genotypic Analysis of the Antimicrobial Potential of Cultivable Streptomyces Isolated from Cave Moonmilk Deposits. Frontiers in Microbiology, 2016, 7, 1455.	1.5	64
22	Intertwining nutrientâ€sensory networks and the control of antibiotic production in <i>Streptomyces</i> . Molecular Microbiology, 2016, 102, 183-195.	1.2	87
23	The CebE/MsiK Transporter is a Doorway to the Cello-oligosaccharide-mediated Induction of Streptomyces scabies Pathogenicity. Scientific Reports, 2016, 6, 27144.	1.6	42
24	OsdR of Streptomyces coelicolor and the Dormancy Regulator DevR of Mycobacterium tuberculosis Control Overlapping Regulons. MSystems, 2016, 1, .	1.7	30
25	The Cellobiose Sensor CebR Is the Gatekeeper of Streptomyces scabies Pathogenicity. MBio, 2015, 6, e02018.	1.8	66
26	Streptomyces lunaelactis sp. nov., a novel ferroverdin A-producing Streptomyces species isolated from a moonmilk speleothem. Antonie Van Leeuwenhoek, 2015, 107, 519-531.	0.7	38
27	Multiple allosteric effectors control the affinity of DasR for its target sites. Biochemical and Biophysical Research Communications, 2015, 464, 324-329.	1.0	32
28	On the necessity and biological significance of threshold-free regulon prediction outputs. Molecular BioSystems, 2015, 11, 333-337.	2.9	9
29	Growth of desferrioxamine-deficient <i>Streptomyces</i> mutants through xenosiderophore piracy of airborne fungal contaminations. FEMS Microbiology Ecology, 2015, 91, fiv080.	1.3	25
30	DasR is a pleiotropic regulator required for antibiotic production, pigment biosynthesis, and morphological development in Saccharopolyspora erythraea. Applied Microbiology and Biotechnology, 2015, 99, 10215-10224.	1.7	19
31	Genome-Wide Analysis of In Vivo Binding of the Master Regulator DasR in Streptomyces coelicolor Identifies Novel Non-Canonical Targets. PLoS ONE, 2015, 10, e0122479.	1.1	51
32	Control of chitin and N-acetylglucosamine utilization in Saccharopolyspora erythraea. Microbiology (United Kingdom), 2014, 160, 1914-1928.	0.7	20
33	Altered desferrioxamine-mediated iron utilization is a common trait of bald mutants of Streptomyces coelicolor. Metallomics, 2014, 6, 1390-1399.	1.0	36
34	GlnR-mediated regulation of nitrogen metabolism in the actinomycete Saccharopolyspora erythraea. Applied Microbiology and Biotechnology, 2014, 98, 7935-7948.	1.7	47
35	Use of red autofluorescence for monitoring prodiginine biosynthesis. Journal of Microbiological Methods, 2013, 93, 138-143.	0.7	29
36	Functional Analysis of the N-Acetylglucosamine Metabolic Genes of Streptomyces coelicolor and Role in Control of Development and Antibiotic Production. Journal of Bacteriology, 2012, 194, 1136-1144.	1.0	87

SEBASTIEN RIGALI

#	Article	IF	CITATIONS
37	Response to Copper Stress in Streptomyces lividans Extends beyond Genes under Direct Control of a Copper-sensitive Operon Repressor Protein (CsoR). Journal of Biological Chemistry, 2012, 287, 17833-17847.	1.6	50
38	Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism. Bioengineered, 2012, 3, 280-285.	1.4	35
39	Extracellular sugar phosphates are assimilated by Streptomyces in a PhoP-dependent manner. Antonie Van Leeuwenhoek, 2012, 102, 425-433.	0.7	19
40	Unsuspected control of siderophore production by <i>N</i> â€acetylglucosamine in streptomycetes. Environmental Microbiology Reports, 2012, 4, 512-521.	1.0	57
41	Role of the phenazine-inducing protein Pip in stress resistance of Pseudomonas chlororaphis. Microbiology (United Kingdom), 2011, 157, 398-407.	0.7	16
42	Regulon of the <i>N</i> -Acetylglucosamine Utilization Regulator NagR in Bacillus subtilis. Journal of Bacteriology, 2011, 193, 3525-3536.	1.0	52
43	The permease gene <i>nagE2</i> is the key to <i>N</i> â€acetylglucosamine sensing and utilization in <i>Streptomyces coelicolor</i> and is subject to multiâ€kevel control. Molecular Microbiology, 2010, 75, 1133-1144.	1.2	73
44	Chapter 1 Variation in Form and Function. Advances in Applied Microbiology, 2009, 69, 1-22.	1.3	123
45	Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by <i>Streptomyces</i> . EMBO Reports, 2008, 9, 670-675.	2.0	358
46	The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. Microbiology (United Kingdom), 2008, 154, 373-382.	0.7	72
47	The Secreted Signaling Protein Factor C Triggers the A-factor Response Regulon in Streptomyces griseus. Molecular and Cellular Proteomics, 2007, 6, 1248-1256.	2.5	20
48	Conserved <i>cis</i> -Acting Elements Upstream of Genes Composing the Chitinolytic System of Streptomycetes Are DasR-Responsive Elements. Journal of Molecular Microbiology and Biotechnology, 2007, 12, 60-66.	1.0	74
49	PREDetector: A new tool to identify regulatory elements in bacterial genomes. Biochemical and Biophysical Research Communications, 2007, 357, 861-864.	1.0	97
50	The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Molecular Microbiology, 2006, 61, 1237-1251.	1.2	188
51	DevA, a GntR-Like Transcriptional Regulator Required for Development in Streptomyces coelicolor. Journal of Bacteriology, 2006, 188, 5014-5023.	1.0	51
52	Pip, a Novel Activator of Phenazine Biosynthesis in Pseudomonas chlororaphis PCL1391. Journal of Bacteriology, 2006, 188, 8283-8293.	1.0	33
53	Improving the alkalophilic performances of the Xyl1 xylanase from Streptomyces sp. S38: Structural comparison and mutational analysis. Protein Science, 2005, 14, 292-302.	3.1	29
54	From Dormant to Germinating Spores ofStreptomycescoelicolorA3(2):Â New Perspectives from thecrpNull Mutant. Journal of Proteome Research, 2005, 4, 1699-1708.	1.8	71

#	Article	IF	CITATIONS
55	Deletion of a Cyclic AMP Receptor Protein Homologue Diminishes Germination and Affects Morphological Development of Streptomyces coelicolor. Journal of Bacteriology, 2004, 186, 1893-1897.	1.0	62
56	Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships. Nucleic Acids Research, 2004, 32, 3418-3426.	6.5	74
57	Crp of Streptomyces coelicolor is the third transcription factor of the large CRP-FNR superfamily able to bind cAMP. Biochemical and Biophysical Research Communications, 2004, 325, 983-990.	1.0	35
58	Site-directed mutagenesis of conserved inverted repeat sequences in the xylanase C promoter region from Streptomyces sp. EC3. Molecular Genetics and Genomics, 2003, 270, 337-346.	1.0	6
59	PlmA, a New Member of the GntR Family, Has Plasmid Maintenance Functions in Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2003, 185, 4315-4325.	1.0	62
60	Subdivision of the Helix-Turn-Helix GntR Family of Bacterial Regulators in the FadR, HutC, MocR, and YtrA Subfamilies. Journal of Biological Chemistry, 2002, 277, 12507-12515.	1.6	311