
Yao Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9106494/publications.pdf Version: 2024-02-01

Υλο Ζμομ

#	Article	IF	CITATIONS
1	Co/Li-dual-site doping towards LiCoO ₂ as a high-voltage, fast-charging, and long-cycling cathode material. Journal of Materials Chemistry A, 2022, 10, 5295-5304.	10.3	21
2	Stabilized and Almost Dendrite-Free Li Metal Anodes by In Situ Construction of a Composite Protective Layer for Li Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 5298-5307.	8.0	22
3	Electron/ion Conductor Double-coated LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Li-ion Battery Cathode Material and Its Electrochemical Performance. Acta Chimica Sinica, 2022, 80, 485.	1.4	0
4	Interfacial Electron Delocalization in Engineering Nanosized Anti-Perovskite Nitride for Efficient CO ₂ Electroreduction. Chemistry of Materials, 2022, 34, 5607-5620.	6.7	11
5	A dual force cross-linked γ-PGA-PAA binder enhancing the cycle stability of silicon-based anodes for lithium-ion batteries. Electrochimica Acta, 2022, 425, 140704.	5.2	15
6	Crystalline and amorphous phases: NiFeCo tri-metal phosphide as an efficient electrocatalyst to accelerate oxygen evolution reaction kinetics. Electrochimica Acta, 2022, 426, 140788.	5.2	11
7	Engineering the interface between LiCoO ₂ and Li ₁₀ CeP ₂ S ₁₂ solid electrolytes with an ultrathin Li ₂ CoTi ₃ O ₈ interlayer to boost the performance of all-solid-state batteries. Energy and Environmental Science, 2021, 14, 437-450.	30.8	82
8	NiCo ₂ O ₄ /CNF Separator Modifiers for Trapping and Catalyzing Polysulfides for High-Performance Lithium–Sulfur Batteries with High Sulfur Loadings and Lean Electrolytes. ACS Sustainable Chemistry and Engineering, 2021, 9, 1804-1813.	6.7	31
9	RuO2 nanoparticles supported on Ni and N co-doped carbon nanotubes as an efficient bifunctional electrocatalyst of lithium-oxygen battery. Science China Materials, 2021, 64, 2397-2408.	6.3	8
10	Multivalent Amide-Hydrogen-Bond Supramolecular Binder Enhances the Cyclic Stability of Silicon-Based Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 22567-22576.	8.0	26
11	Controlled Synthesis of Porous Hollow Fe–N/C Nanoshells as Highâ€Performance Oxygen Reduction Reaction Electrocatalysts for Zn–Air Battery. Energy Technology, 2021, 9, 2100142.	3.8	4
12	Customizing Multifunctional Sulfur Host Materials Via a General Anionâ€Exchange Process with Metal–Organic Solid. Advanced Functional Materials, 2021, 31, 2104513.	14.9	4
13	A "Biconcave-Alleviated―Strategy to Construct <i>Aspergillus niger</i> -Derived Carbon/MoS ₂ for Ultrastable Sodium Ion Storage. ACS Nano, 2021, 15, 13814-13825.	14.6	49
14	LiO.5PAA domains filled in porous sodium alginate skeleton: A 3D bicontinuous composite network binder to stabilize micro-silicon anode for high-performance lithium ion battery. Electrochimica Acta, 2021, 386, 138361.	5.2	17
15	Improving the Electrochemical Property of Silicon Anodes through Hydrogen-Bonding Cross-Linked Thiourea-Based Polymeric Binders. ACS Applied Materials & Interfaces, 2021, 13, 639-649.	8.0	36
16	Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst. Angewandte Chemie - International Edition, 2021, 60, 26829-26836.	13.8	210
17	Evolution of Cationic Vacancy Defects: A Motif for Surface Restructuration of OER Precatalyst. Angewandte Chemie, 2021, 133, 27033-27040.	2.0	5
18	Formulating a New Electrolyte: Synergy between Low-Polar and Non-polar Solvents in Tailoring the Solid Electrolyte Interface for the Silicon Anode. ACS Applied Materials & Interfaces, 2021, 13, 55700-55711.	8.0	7

Үао Zhou

#	Article	IF	CITATIONS
19	Fabrication of multi-shell coated silicon nanoparticles via in-situ electroless deposition as high performance anodes for lithium ion batteries. Journal of Energy Chemistry, 2020, 48, 160-168.	12.9	37
20	Synergetic Effect of Ru and NiO in the Electrocatalytic Decomposition of Li ₂ CO ₃ to Enhance the Performance of a Li-CO ₂ /O ₂ Battery. ACS Catalysis, 2020, 10, 1640-1651.	11.2	85
21	Metal Organic Framework Nanorod Doped Solid Polymer Electrolyte with Decreased Crystallinity for Highâ€Performance Allâ€Solidâ€State Lithium Batteries. ChemElectroChem, 2020, 7, 1125-1134.	3.4	49
22	Seed-Induced Zeolitic TS-1 Immobilized with Bioinspired-Au Nanoparticles for Propylene Epoxidation with O2 and H2. Catalysis Letters, 2020, 150, 1798-1811.	2.6	9
23	The Si@Câ€Network Electrode Prepared by an Inâ€Situ Carbonization Strategy with Enhanced Cycle Performance. ChemElectroChem, 2020, 7, 4999-5004.	3.4	4
24	High Cycling Performance Liâ€ S Battery via Fenugreek Gum Binder Through Chemical Bonding of the Binder with Polysulfides in Nanosulfur@CNFs Cathode. ChemistrySelect, 2020, 5, 8969-8979.	1.5	11
25	Cubic MnS–FeS ₂ Composites Derived from a Prussian Blue Analogue as Anode Materials for Sodium-Ion Batteries with Long-Term Cycle Stability. ACS Applied Materials & Interfaces, 2020, 12, 43624-43633.	8.0	53
26	A novel morphology-controlled synthesis of Na+-doped Li- and Mn-rich cathodes by the self-assembly of amphiphilic spherical micelles. Sustainable Materials and Technologies, 2020, 25, e00171.	3.3	10
27	Controlled synthesis of FeNx-CoNx dual active sites interfaced with metallic Co nanoparticles as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 278, 119259.	20.2	92
28	High-Voltage LiCoO ₂ Material Encapsulated in a Li ₄ Ti ₅ O ₁₂ Ultrathin Layer by High-Speed Solid-Phase Coating Process. ACS Applied Energy Materials, 2020, 3, 2593-2603.	5.1	36
29	Suppressing lithium dendrite growth by a synergetic effect of uniform nucleation and inhibition. Journal of Materials Chemistry A, 2020, 8, 4300-4307.	10.3	29
30	Si anode for next-generation lithium-ion battery. Current Opinion in Electrochemistry, 2019, 18, 46-54.	4.8	48
31	Ultrahigh sulfur content up to 93Âwt% encapsulated in multilayer nanoshell of V/V2O5 composite to suppress shuttle effect of lithium–sulfur battery with high-performance. Materials Today Energy, 2019, 13, 267-276.	4.7	29
32	Adsorption and On-Site Transformation of Transition Metal Cations on Ni-Doped AlOOH Nanoflowers for OER Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 5953-5962.	6.7	14
33	Aluminum-Based Metal–Organic Frameworks Derived Al ₂ O ₃ -Loading Mesoporous Carbon as a Host Matrix for Lithium-Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 47939-47947.	8.0	26
34	Core–Shell Structured S@Co(OH) ₂ with a Carbon-Nanofiber Interlayer: A Conductive Cathode with Suppressed Shuttling Effect for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 4065-4073.	8.0	35
35	Suppressing Li dendrite by a protective biopolymeric film from tamarind seed polysaccharide for high-performance Li metal anode. Electrochimica Acta, 2019, 299, 636-644.	5.2	34
36	High-performance rechargeable Li-CO2/O2 battery with Ru/N-doped CNT catalyst. Chemical Engineering Journal, 2019, 363, 224-233.	12.7	58

Үао Zhou

#	Article	IF	CITATIONS
37	Sodiumâ€Alginateâ€Based Binders for Lithiumâ€Rich Cathode Materials in Lithiumâ€Ion Batteries to Suppress Voltage and Capacity Fading. ChemElectroChem, 2018, 5, 1321-1329.	3.4	29
38	Towards active macro–mesoporous hydrotreating catalysts: synthesis and assembly of mesoporous alumina microspheres. Catalysis Science and Technology, 2018, 8, 1892-1904.	4.1	13
39	3D Networks of CoFePi with Hierarchical Porosity for Effective OER Electrocatalysis. Small, 2018, 14, e1704403.	10.0	72
40	Sulfur Microspheres Encapsulated in Porous Silverâ€Based Shell with Superior Performance for Lithiumâ€ S ulfur Batteries. ChemElectroChem, 2018, 5, 1683-1690.	3.4	9
41	Three-Dimensional Networks of S-Doped Fe/N/C with Hierarchical Porosity for Efficient Oxygen Reduction in Polymer Electrolyte Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2018, 10, 14602-14613.	8.0	50
42	Interfacial Interaction between FeOOH and Ni–Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis. ACS Catalysis, 2018, 8, 11342-11351.	11.2	414
43	A Natural Biopolymer Film as a Robust Protective Layer to Effectively Stabilize Lithiumâ€Metal Anodes. Small, 2018, 14, e1801054.	10.0	61
44	Fabrication of Si Nanoparticles@Conductive Carbon Framework@Polymer Composite as Highâ€Arealâ€Capacity Anode of Lithiumâ€Ion Batteries. ChemElectroChem, 2018, 5, 3258-3265.	3.4	20
45	Onion-like metal–organic colloidosomes from counterion-induced self-assembly of anionic surfactants. Journal of Materials Chemistry A, 2018, 6, 14091-14102.	10.3	7
46	Synthesis, Self-Assembly, Transformation, and Functionalization of Nanoscale Artificial Allophane Spherules for Catalytic Applications. Chemistry of Materials, 2017, 29, 6076-6086.	6.7	9
47	Synthesis-cum-assembly toward hierarchical nanoarchitectures. Coordination Chemistry Reviews, 2017, 352, 291-305.	18.8	6
48	Co3O4@(Fe-Doped)Co(OH)2 Microfibers: Facile Synthesis, Oriented-Assembly, Formation Mechanism, and High Electrocatalytic Activity. ACS Applied Materials & Interfaces, 2017, 9, 30880-30890.	8.0	20
49	Water Soluble Binder, an Electrochemical Performance Booster for Electrode Materials with High Energy Density. Advanced Energy Materials, 2017, 7, 1701185.	19.5	248
50	Transitionâ€Metalâ€Ionsâ€Induced Coalescence: Stitching Au Nanoclusters into Tubular Auâ€Based Nanocomposites. Small, 2016, 12, 2652-2664.	10.0	14
51	Metal–Hydroxide and Gold–Nanocluster Interfaces: Enhancing Catalyst Activity and Stability for Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2016, 120, 29348-29357.	3.1	47
52	Alumina‣upported Metal Catalysts inside a Mesoporous Aluminum‣ilicate Shell: Nanoscale Reactors Prepared through the Transformation of MILâ€96(Al) Nanocrystals. ChemCatChem, 2016, 8, 1283-1287.	3.7	15
53	Kinetically Controlled Growth of Fine Gold Nanofractals from Au(I) via Indirect Galvanic Replacement Reaction. ACS Applied Materials & Interfaces, 2015, 7, 21552-21561.	8.0	8
54	Simultaneous Synthesis and Assembly of Noble Metal Nanoclusters with Variable Micellar Templates. Journal of the American Chemical Society, 2014, 136, 13805-13817.	13.7	77

Үао Zhou

#	Article	IF	CITATIONS
55	Quantitative nucleation and growth kinetics of gold nanoparticles via model-assisted dynamic spectroscopic approach. Journal of Colloid and Interface Science, 2013, 407, 8-16.	9.4	28
56	Transfer of Biosynthesized Gold Nanoparticles from Water into an Ionic Liquid Using Alkyltrimethyl Ammonium Bromide: An Anion-Exchange Process. Langmuir, 2011, 27, 166-169.	3.5	8
57	Biosynthesis of Gold Nanoparticles by Foliar Broths: Roles of Biocompounds and Other Attributes of the Extracts. Nanoscale Research Letters, 2010, 5, 1351-1359.	5.7	101
58	"ALL FREE―— a novel design concept of applying partial oxidation process to vehicle engine. Frontiers of Chemical Engineering in China, 2010, 4, 207-212.	0.6	0