
Marie Kmita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9106187/publications.pdf Version: 2024-02-01

MADIE KMITA

#	Article	IF	CITATIONS
1	Downâ€regulation of Grem1 expression in the distal limb mesoderm is a necessary precondition for phalanx development. Developmental Dynamics, 2021, , .	0.8	3
2	Phox2a Defines a Developmental Origin of the Anterolateral System in Mice and Humans. Cell Reports, 2020, 33, 108425.	2.9	35
3	Polycomb Repressive Complexes in <i>Hox</i> Gene Regulation: Silencing and Beyond. BioEssays, 2020, 42, e1900249.	1.2	21
4	Transcriptional Trajectories in Mouse Limb Buds Reveal the Transition from Anterior-Posterior to Proximal-Distal Patterning at Early Limb Bud Stage. Journal of Developmental Biology, 2020, 8, 31.	0.9	11
5	HOX13-dependent chromatin accessibility underlies the transition towards the digit development program. Nature Communications, 2020, 11, 2491.	5.8	40
6	PRC2-Associated Chromatin Contacts in the Developing Limb Reveal a Possible Mechanism for the Atypical Role of PRC2 in HoxA Gene Expression. Developmental Cell, 2019, 50, 184-196.e4.	3.1	30
7	Multifaceted Hoxa13 function in urogenital development underlies the Hand–Foot–Genital Syndrome. Human Molecular Genetics, 2019, 28, 1671-1681.	1.4	6
8	Insights on the role of hox genes in the emergence of the pentadactyl ground state. Genesis, 2018, 56, e23046.	0.8	10
9	The remote transcriptional control of Hox genes. International Journal of Developmental Biology, 2018, 62, 685-692.	0.3	7
10	Distal Limb Patterning Requires Modulation of cis-Regulatory Activities by HOX13. Cell Reports, 2016, 17, 2913-2926.	2.9	72
11	Evolution of Hoxa11 regulation in vertebrates is linked to the pentadactyl state. Nature, 2016, 539, 89-92.	13.7	67
12	A <scp><i>H</i></scp> <i>oxa13</i> :Cre mouse strain for conditional gene manipulation in developing limb, hindgut, and urogenital system. Genesis, 2015, 53, 366-376.	0.8	29
13	"Selfâ€regulation,―a new facet of <i>Hox</i> genes' function. Developmental Dynamics, 2014, 243, 182-19	10.8	39
14	Decoupling the function of Hox and Shh in developing limb reveals multiple inputs of Hox genes on limb growth. Development (Cambridge), 2013, 140, 2130-2138.	1.2	44
15	Clustering of Tissue-Specific Sub-TADs Accompanies the Regulation of HoxA Genes in Developing Limbs. PLoS Genetics, 2013, 9, e1004018.	1.5	164
16	Recruitment of 5′ Hoxa genes in the allantois is essential for proper extra-embryonic function in placental mammals. Development (Cambridge), 2012, 139, 731-739.	1.2	36
17	<i>Hox</i> Genes Regulate Digit Patterning by Controlling the Wavelength of a Turing-Type Mechanism. Science, 2012, 338, 1476-1480.	6.0	309
18	GLI3 Constrains Digit Number by Controlling Both Progenitor Proliferation and BMP-Dependent Exit to Chondrogenesis. Developmental Cell, 2012, 22, 837-848.	3.1	94

MARIE KMITA

#	Article	IF	CITATIONS
19	Regulatory constraints in the evolution of the tetrapod limb anterior–posterior polarity. Nature, 2006, 443, 985-988.	13.7	111
20	Early developmental arrest of mammalian limbs lacking HoxA/HoxD gene function. Nature, 2005, 435, 1113-1116.	13.7	238
21	A Dual Role for Hox Genes in Limb Anterior-Posterior Asymmetry. Science, 2004, 304, 1669-1672.	6.0	261
22	Organizing Axes in Time and Space; 25 Years of Colinear Tinkering. Science, 2003, 301, 331-333.	6.0	497
23	Evolutionary conserved sequences are required for the insulation of the vertebrateHoxdcomplex in neural cells. Development (Cambridge), 2002, 129, 5521-5528.	1.2	36
24	Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs. Nature, 2002, 420, 145-150.	13.7	207
25	Targeted inversion of a polar silencer within the HoxD complex re-allocates domains of enhancer sharing. Nature Genetics, 2000, 26, 451-454.	9.4	74
26	PRC2-Dependent Tissue-Specific 3D Architecture in the Developing Limb Reveals a Possible Mechanism	0.4	0

for the Atypical Role of PRC2 in Gene Activation. SSRN Electronic Journal, 0, , . 26