Marie Kmita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9106187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organizing Axes in Time and Space; 25 Years of Colinear Tinkering. Science, 2003, 301, 331-333.	6.0	497
2	<i>Hox</i> Genes Regulate Digit Patterning by Controlling the Wavelength of a Turing-Type Mechanism. Science, 2012, 338, 1476-1480.	6.0	309
3	A Dual Role for Hox Genes in Limb Anterior-Posterior Asymmetry. Science, 2004, 304, 1669-1672.	6.0	261
4	Early developmental arrest of mammalian limbs lacking HoxA/HoxD gene function. Nature, 2005, 435, 1113-1116.	13.7	238
5	Serial deletions and duplications suggest a mechanism for the collinearity of Hoxd genes in limbs. Nature, 2002, 420, 145-150.	13.7	207
6	Clustering of Tissue-Specific Sub-TADs Accompanies the Regulation of HoxA Genes in Developing Limbs. PLoS Genetics, 2013, 9, e1004018.	1.5	164
7	Regulatory constraints in the evolution of the tetrapod limb anterior–posterior polarity. Nature, 2006, 443, 985-988.	13.7	111
8	GLI3 Constrains Digit Number by Controlling Both Progenitor Proliferation and BMP-Dependent Exit to Chondrogenesis. Developmental Cell, 2012, 22, 837-848.	3.1	94
9	Targeted inversion of a polar silencer within the HoxD complex re-allocates domains of enhancer sharing. Nature Genetics, 2000, 26, 451-454.	9.4	74
10	Distal Limb Patterning Requires Modulation of cis-Regulatory Activities by HOX13. Cell Reports, 2016, 17, 2913-2926.	2.9	72
11	Evolution of Hoxa11 regulation in vertebrates is linked to the pentadactyl state. Nature, 2016, 539, 89-92.	13.7	67
12	Decoupling the function of Hox and Shh in developing limb reveals multiple inputs of Hox genes on limb growth. Development (Cambridge), 2013, 140, 2130-2138.	1.2	44
13	HOX13-dependent chromatin accessibility underlies the transition towards the digit development program. Nature Communications, 2020, 11, 2491.	5.8	40
14	"Selfâ€regulation,―a new facet of <i>Hox</i> genes' function. Developmental Dynamics, 2014, 243, 182-19	€10.8	39
15	Evolutionary conserved sequences are required for the insulation of the vertebrateHoxdcomplex in neural cells. Development (Cambridge), 2002, 129, 5521-5528.	1.2	36
16	Recruitment of 5′ Hoxa genes in the allantois is essential for proper extra-embryonic function in placental mammals. Development (Cambridge), 2012, 139, 731-739.	1.2	36
17	Phox2a Defines a Developmental Origin of the Anterolateral System in Mice and Humans. Cell Reports, 2020, 33, 108425.	2.9	35
18	PRC2-Associated Chromatin Contacts in the Developing Limb Reveal a Possible Mechanism for the Atypical Role of PRC2 in HoxA Gene Expression. Developmental Cell, 2019, 50, 184-196.e4.	3.1	30

MARIE KMITA

#	Article	IF	CITATIONS
19	A <scp><i>H</i></scp> <i>oxa13</i> :Cre mouse strain for conditional gene manipulation in developing limb, hindgut, and urogenital system. Genesis, 2015, 53, 366-376.	0.8	29
20	Polycomb Repressive Complexes in <i>Hox</i> Gene Regulation: Silencing and Beyond. BioEssays, 2020, 42, e1900249.	1.2	21
21	Transcriptional Trajectories in Mouse Limb Buds Reveal the Transition from Anterior-Posterior to Proximal-Distal Patterning at Early Limb Bud Stage. Journal of Developmental Biology, 2020, 8, 31.	0.9	11
22	Insights on the role of hox genes in the emergence of the pentadactyl ground state. Genesis, 2018, 56, e23046.	0.8	10
23	The remote transcriptional control of Hox genes. International Journal of Developmental Biology, 2018, 62, 685-692.	0.3	7
24	Multifaceted Hoxa13 function in urogenital development underlies the Hand–Foot–Genital Syndrome. Human Molecular Genetics, 2019, 28, 1671-1681.	1.4	6
25	Downâ€regulation of Grem1 expression in the distal limb mesoderm is a necessary precondition for phalanx development. Developmental Dynamics, 2021, , .	0.8	3
26	PRC2-Dependent Tissue-Specific 3D Architecture in the Developing Limb Reveals a Possible Mechanism for the Atypical Role of PRC2 in Gene Activation. SSRN Electronic Journal, 0, , .	0.4	0