Blake T Aftab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9105815/publications.pdf Version: 2024-02-01

RIAKE T AFTAR

#	Article	IF	CITATIONS
1	Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature, 2022, 603, 321-327.	27.8	343
2	Allogeneic CD20â€ŧargeted γδT cells exhibit innate and adaptive antitumor activities in preclinical B ell lymphoma models. Clinical and Translational Immunology, 2022, 11, e1373.	3.8	42
3	Off-the-shelf Vδ1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma. , 2021, 9, e003441.		76
4	Epstein–Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends in Molecular Medicine, 2020, 26, 296-310.	6.7	178
5	Profiling HPV-16–specific T cell responses reveals broad antigen reactivities in oropharyngeal cancer patients. Journal of Experimental Medicine, 2020, 217, .	8.5	37
6	Potent Activity of an Anti-ICAM1 Antibody–Drug Conjugate against Multiple Myeloma. Clinical Cancer Research, 2020, 26, 6028-6038.	7.0	20
7	Toward "offâ€ŧheâ€shelf―allogeneic CAR T cells. Advances in Cell and Gene Therapy, 2020, 3, e86.	0.9	20
8	Proteomeâ€wide analysis of Tâ€cell response to BK polyomavirus in healthy virus carriers and kidney transplant recipients reveals aÂunique transcriptional and functional profile. Clinical and Translational Immunology, 2020, 9, e01102.	3.8	11
9	Repurposing tofacitinib as an anti-myeloma therapeutic to reverse growth-promoting effects of the bone marrow microenvironment. Haematologica, 2018, 103, 1218-1228.	3.5	30
10	Molecular signature of Epstein-Barr virus infection in MS brain lesions. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e466.	6.0	74
11	Epstein-Barr virus–specific T cell therapy for progressive multiple sclerosis. JCI Insight, 2018, 3, .	5.0	105
12	The p97 Inhibitor CB-5083 Is a Unique Disrupter of Protein Homeostasis in Models of Multiple Myeloma. Molecular Cancer Therapeutics, 2017, 16, 2375-2386.	4.1	90
13	Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells. Journal of Clinical Investigation, 2016, 126, 4640-4653.	8.2	74
14	Tofacitinib Reverses Growth Promoting Effects of the Bone Marrow Stromal Environment Though Inhibition of JAK1/STAT3 Signaling in Multiple Myeloma. Blood, 2016, 128, 2098-2098.	1.4	0
15	CD46 Is Amplified in High-Risk Myeloma with Gain of Chromosome 1q and Selectively Targeted By a Novel Anti-CD46 Antibody-Drug Conjugate. Blood, 2016, 128, 384-384.	1.4	37
16	Validation of the Hsp70–Bag3 Protein–Protein Interaction as a Potential Therapeutic Target in Cancer. Molecular Cancer Therapeutics, 2015, 14, 642-648.	4.1	105
17	Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis. Cancer Cell, 2015, 28, 653-665.	16.8	319
18	Constitutive Vs. Stroma-Induced Kinase Dependencies in Myeloma Cells: Functional Mapping Using Small Molecule Inhibitors As Chemical Probes. Blood, 2015, 126, 3709-3709.	1.4	0

BLAKE T AFTAB

#	Article	IF	CITATIONS
19	Defining Primary Marrow Microenvironment-Induced Synthetic Lethality and Resistance for 2,684 Approved Drugs Across Molecularly Distinct Forms of Multiple Myeloma. Blood, 2015, 126, 503-503.	1.4	1
20	Pre-Clinical Activity of the Novel, First-in-Class p97 Inhibitor, CB-5083, in Multiple Myeloma. Blood, 2014, 124, 4701-4701.	1.4	0
21	Genome-Scale Crispr-Cas9 Knockout Studies Reveal Mutifactorial and Functionally Overlapping Mechanisms of Myeloma Cell Resistance to Proteasome Inhibition. Blood, 2014, 124, 273-273.	1.4	16
22	Temporal Dynamics of Tumor-Microenvironment Interaction and Treatment Responses Revealed through Time-Lapse Compartment-Specific Bioluminescence Imaging: Translational implications. Blood, 2014, 124, 276-276.	1.4	0
23	Functional Mapping of Multiple Myeloma Kinome Using a Small Molecule Inhibitor Library. Blood, 2014, 124, 3642-3642.	1.4	0
24	Itraconazole and Arsenic Trioxide Inhibit Hedgehog Pathway Activation and Tumor Growth Associated with Acquired Resistance to Smoothened Antagonists. Cancer Cell, 2013, 23, 23-34.	16.8	296
25	Phase 2 Study of Pemetrexed and Itraconazole as Second-Line Therapy for Metastatic Nonsquamous Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2013, 8, 619-623.	1.1	119
26	Bridging the Gap between Preclinical and Clinical Studies Using Pharmacokinetic–Pharmacodynamic Modeling: An Analysis of GDC-0973, a MEK Inhibitor. Clinical Cancer Research, 2012, 18, 3090-3099.	7.0	74
27	Therapeutic potential of Hedgehog signaling inhibitors in cancer: rationale and clinical data. Clinical Investigation, 2012, 2, 371-385.	0.0	1
28	A Polymeric Nanoparticle Encapsulated Small-Molecule Inhibitor of Hedgehog Signaling (NanoHHI) Bypasses Secondary Mutational Resistance to Smoothened Antagonists. Molecular Cancer Therapeutics, 2012, 11, 165-173.	4.1	77
29	Itraconazole Side Chain Analogues: Structure–Activity Relationship Studies for Inhibition of Endothelial Cell Proliferation, Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Glycosylation, and Hedgehog Signaling. Journal of Medicinal Chemistry, 2011, 54, 7363-7374.	6.4	45
30	Itraconazole Inhibits Angiogenesis and Tumor Growth in Non–Small Cell Lung Cancer. Cancer Research, 2011, 71, 6764-6772.	0.9	132
31	Eight polymorphic microsatellite markers for kelp bass, Paralabax clathratus, amplified in three multiplex polymerase chain reaction sets. Molecular Ecology Notes, 2005, 5, 127-129.	1.7	4