Andrés G Salvay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9105759/publications.pdf

Version: 2024-02-01

28 773 17 26
papers citations h-index g-index

28 28 28 960 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Bacterial cellulose films production by Kombucha symbiotic community cultured on different herbal infusions. Food Chemistry, 2022, 372, 131346.	8.2	36
2	Water Vapour Transport in Biopolymeric Materials: Effects of Thickness and Water Vapour Pressure Gradient on Yeast Biomass-Based Films. Journal of Polymers and the Environment, 2022, 30, 2976-2989.	5.0	6
3	New Antioxidant Active Packaging Films Based on Yeast Cell Wall and Naphtho-Î ³ -Pyrone Extract. Polymers, 2022, 14, 2066.	4.5	2
4	Incorporation of Poly(Itaconic Acid) with Quaternized Thiazole Groups on Gelatin-Based Films for Antimicrobial-Active Food Packaging. Polymers, 2021, 13, 200.	4.5	20
5	Impact of the filmâ€forming dispersion pH on the properties of yeast biomass films. Journal of the Science of Food and Agriculture, 2021, 101, 5636-5644.	3.5	4
6	Kombucha Tea By-product as Source of Novel Materials: Formulation and Characterization of Films. Food and Bioprocess Technology, 2020, 13, 1166-1180.	4.7	35
7	Biobased Materials from Microbial Biomass and Its Derivatives. Materials, 2020, 13, 1263.	2.9	49
8	Water kefir grains as an innovative source of materials: Study of plasticiser content on film properties. European Polymer Journal, 2019, 120, 109234.	5.4	29
9	Hydration and water vapour transport properties in yeast biomass based films: A study of plasticizer content and thickness effects. European Polymer Journal, 2018, 99, 9-17.	5 . 4	34
10	Characterization of thermal, mechanical and hydration properties of novel films based on Saccharomyces cerevisiae biomass. Innovative Food Science and Emerging Technologies, 2018, 48, 240-247.	5.6	17
11	Use of Residual Yeast Cell Wall for New Biobased Materials Production: Effect of Plasticization on Film Properties. Food and Bioprocess Technology, 2018, 11, 1995-2007.	4.7	27
12	Î ² -Glucan, a Promising Polysaccharide for Bio-based Films Developments for Food Contact Materials and Medical Applications. Current Organic Chemistry, 2018, 22, 1249-1254.	1.6	27
13	Development of innovative biodegradable films based on biomass of Saccharomyces cerevisiae. Innovative Food Science and Emerging Technologies, 2016, 36, 83-91.	5.6	21
14	Use of neutron scattering techniques for Antifreeze Protein mechanistic studies. Neutron News, 2014, 25, 24-27.	0.2	0
15	Perdeuteration: improved visualization of solvent structure in neutron macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 3266-3272.	2.5	20
16	Biophysical characterization of the outer membrane polysaccharide export protein and the polysaccharide co-polymerase protein from Xanthomonas campestris. Protein Expression and Purification, 2014, 101, 42-53.	1.3	9
17	Conformational Dissection of a Viral Intrinsically Disordered Domain Involved in Cellular Transformation. PLoS ONE, 2013, 8, e72760.	2.5	17
18	Sedimentation Velocity Analytical Ultracentrifugation for Intrinsically Disordered Proteins. Methods in Molecular Biology, 2012, 896, 91-105.	0.9	17

#	ARTICLE	lF	CITATION
19	Protein Stability and Dynamics Modulation: The Case of Human Frataxin. PLoS ONE, 2012, 7, e45743.	2.5	25
20	Neutron structure of typeâ€III antifreeze protein allows the reconstruction of AFP–ice interface. Journal of Molecular Recognition, 2011, 24, 724-732.	2.1	64
21	NMR Structure and Ion Channel Activity of the p7 Protein from Hepatitis C Virus. Journal of Biological Chemistry, 2010, 285, 31446-31461.	3.4	119
22	Structure and Interactions of Fish Type III Antifreeze Protein inÂSolution. Biophysical Journal, 2010, 99, 609-618.	0.5	18
23	Analytical Ultracentrifugation Sedimentation Velocity for the Characterization of Detergent-Solubilized Membrane Proteins Ca++-ATPase and ExbB. Journal of Biological Physics, 2007, 33, 399-419.	1.5	50
24	Electro-Optical Properties Characterization of Fish Type III Antifreeze Protein. Journal of Biological Physics, 2007, 33, 389-397.	1.5	12
25	Lactobionamide Surfactants with Hydrogenated, Perfluorinated or Hemifluorinated Tails:Â Physical-Chemical and Biochemical Characterization. Langmuir, 2006, 22, 8881-8890.	3.5	38
26	The Role of Hydration on the Mechanism of Allosteric Regulation: In Situ Measurements of the Oxygen-Linked Kinetics of Water Binding to Hemoglobin. Biophysical Journal, 2003, 84, 564-570.	0.5	35
27	Hydration effects on the structural properties and haem–haem interaction in haemoglobin. Physical Chemistry Chemical Physics, 2003, 5, 192-197.	2.8	16
28	Analytical Ultracentrifuge for the Characterization of Detergent in Solution., 0,, 74-82.		26