B Milan HorÃ;Äek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/910572/publications.pdf Version: 2024-02-01

<u> R Μιιαν Ηοράιάεκ</u>

#	Article	IF	CITATIONS
1	Inverse Solution Mapping of Epicardial Potentials. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 1001-1009.	4.8	91
2	The inverse problem of electrocardiography: A solution in terms of single- and double-layer sources on the epicardial surface. Mathematical Biosciences, 1997, 144, 119-154.	1.9	84
3	Improved EASI coefficients: Their derivation, values, and performance. Journal of Electrocardiology, 2002, 35, 23-33.	0.9	77
4	Real-Time Localization of VentricularÂTachycardia Origin From the 12-Lead Electrocardiogram. JACC: Clinical Electrophysiology, 2017, 3, 687-699.	3.2	42
5	Simulated Epicardial Potential Maps During Paced Activation Reflect Myocardial Fibrous Structure. Annals of Biomedical Engineering, 1998, 26, 1022-1035.	2.5	37
6	Comparability of 12-lead ECGs derived from EASI leads with standard 12-lead ECGS in the classification of acute myocardial ischemia and old myocardial infarction. Journal of Electrocardiology, 2002, 35, 35-39.	0.9	34
7	Statistical and deterministic approaches to designing transformations of electrocardiographic leads. Journal of Electrocardiology, 2002, 35, 41-52.	0.9	34
8	Detection of acute ischemia from the EASI-derived 12-lead electrocardiogram and from the 12-lead electrocardiogram acquired in clinical practice. Journal of Electrocardiology, 2007, 40, 120-126.	0.9	34
9	Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology. Medical Image Analysis, 2018, 48, 43-57.	11.6	32
10	Electrocardiographic ST-segment changes during acute myocardial ischemia. Journal of Interventional Cardiac Electrophysiology, 2002, 6, 196-203.	1.0	29
11	Noninvasive epicardial and endocardial electrocardiographic imaging of scar-related ventricular tachycardia. Journal of Electrocardiology, 2016, 49, 887-893.	0.9	29
12	Development of an automated Selvester Scoring System for estimating the size of myocardial infarction from the electrocardiogram. Journal of Electrocardiology, 2006, 39, 162-168.	0.9	27
13	Using inverse electrocardiography to image myocardial infarction—reflecting on the 2007 PhysioNet/Computers in Cardiology Challenge. Journal of Electrocardiology, 2008, 41, 630-635.	0.9	27
14	On designing and testing transformations for derivation of standard 12-lead/18-lead electrocardiograms and vectorcardiograms from reduced sets of predictor leads. Journal of Electrocardiology, 2008, 41, 220-229.	0.9	25
15	Non-invasive epicardial and endocardial electrocardiographic imaging for scar-related ventricular tachycardia. Europace, 2018, 20, f263-f272.	1.7	23
16	Sequential Factorized Autoencoder for Localizing the Origin of Ventricular Activation From 12-Lead Electrocardiograms. IEEE Transactions on Biomedical Engineering, 2020, 67, 1505-1516.	4.2	23
17	Quantitative assessment of myocardial ischemia by electrocardiographic and scintigraphic imaging. Journal of Electrocardiology, 2003, 36, 17-26.	0.9	22
18	Examining the Impact of Prior Models in Transmural Electrophysiological Imaging: A Hierarchical Multiple-Model Bayesian Approach. IEEE Transactions on Medical Imaging, 2016, 35, 229-243.	8.9	22

B MILAN HORáÄEK

#	Article	IF	CITATIONS
19	Localization of Ventricular Activation Origin from the 12-Lead ECG: A Comparison of Linear Regression with Non-Linear Methods of Machine Learning. Annals of Biomedical Engineering, 2019, 47, 403-412.	2.5	22
20	Spatially Adaptive Multi-Scale Optimization for Local Parameter Estimation in Cardiac Electrophysiology. IEEE Transactions on Medical Imaging, 2017, 36, 1966-1978.	8.9	17
21	Generative Modeling and Inverse Imaging of Cardiac Transmembrane Potential. Lecture Notes in Computer Science, 2018, , 508-516.	1.3	16
22	Prospective Assessment of an Automated Intraprocedural 12-Lead ECG-Based System for Localization of Early Left Ventricular Activation. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008262.	4.8	15
23	Comparison of epicardial potential maps derived from the 12-lead electrocardiograms with scintigraphic images during controlled myocardial ischemia. Journal of Electrocardiology, 2011, 44, 707-712.	0.9	14
24	Embedding high-dimensional Bayesian optimization via generative modeling: Parameter personalization of cardiac electrophysiological models. Medical Image Analysis, 2020, 62, 101670.	11.6	14
25	Validation of improved vessel-specific leads (VSLs) for detecting acute myocardial ischemia. Journal of Electrocardiology, 2015, 48, 1032-1039.	0.9	12
26	EASI-Derived vs standard 12-lead electrocardiogram for Selvester QRS score estimations of chronic myocardial infarct size, using cardiac magnetic resonance imaging as gold standard. Journal of Electrocardiology, 2009, 42, 145-151.	0.9	11
27	Discrimination of ST deviation caused by acute coronary occlusion from normal variants and other abnormal conditions, using computed electrocardiographic imaging based on 12-lead ECG. Journal of Electrocardiology, 2013, 46, 197-203.	0.9	11
28	Noninvasive electrocardiographic imaging of chronic myocardial infarct scar. Journal of Electrocardiology, 2015, 48, 952-958.	0.9	9
29	Localization of ventricular activation origin using patientâ€specific geometry: Preliminary results. Journal of Cardiovascular Electrophysiology, 2018, 29, 979-986.	1.7	9
30	Detection of myocardial ischemia by vessel-specific leads derived from the 12-lead electrocardiogram and its subsets. Journal of Electrocardiology, 2008, 41, 508-517.	0.9	8
31	Improving Disentangled Representation Learning with the Beta Bernoulli Process. , 2019, , .		7
32	Feasibility study shows concordance between imageâ€based virtualâ€heart ablation targets and predicted ECGâ€based arrhythmia exitâ€sites. PACE - Pacing and Clinical Electrophysiology, 2021, 44, 432-441.	1.2	7
33	Disentangling inter-subject variations: Automatic localization of ventricular tachycardia origin from 12-lead electrocardiograms. , 2017, , .		6
34	Rapid 12-lead automated localization method: Comparison to electrocardiographic imaging (ECGI) in patient-specific geometry. Journal of Electrocardiology, 2018, 51, S92-S97.	0.9	6
35	Automated intraprocedural localization of origin of ventricular activation using patient-specific computed tomographic imaging. Heart Rhythm, 2020, 17, 567-575.	0.7	6
36	Localization of Activation Origin on Patient-Specific Endocardial Surface by the Equivalent Double Layer (EDL) Source Model With Sparse Bayesian Learning. IEEE Transactions on Biomedical Engineering, 2019, 66, 2287-2295.	4.2	5

B Milan Horãiäek

#	Article	IF	CITATIONS
37	Learning to Disentangle Inter-Subject Anatomical Variations in Electrocardiographic Data. IEEE Transactions on Biomedical Engineering, 2022, 69, 860-870.	4.2	5
38	Assessment of an ECCâ€Based System for Localizing Ventricular Arrhythmias in Patients With Structural Heart Disease. Journal of the American Heart Association, 2021, 10, e022217.	3.7	5
39	Fast Posterior Estimation of Cardiac Electrophysiological Model Parameters via Bayesian Active Learning. Frontiers in Physiology, 2021, 12, 740306.	2.8	5
40	Automatic Coordinate Prediction of the Exit of Ventricular Tachycardia from 12-Lead Electrocardiogram. , 0, , .		4
41	Noninvasive Reconstruction of Transmural Transmembrane Potential With Simultaneous Estimation of Prior Model Error. IEEE Transactions on Medical Imaging, 2019, 38, 2582-2595.	8.9	4
42	Localization of Activation Origin on Patient-Specific Epicardial Surface by Empirical Bayesian Method. IEEE Transactions on Biomedical Engineering, 2019, 66, 1380-1389.	4.2	4
43	Bayesian Optimization on Large Graphs via a Graph Convolutional Generative Model: Application in Cardiac Model Personalization. Lecture Notes in Computer Science, 2019, , 458-467.	1.3	4
44	A Variational Approach to Sparse Model Error Estimation in Cardiac Electrophysiological Imaging. Lecture Notes in Computer Science, 2017, , 745-753.	1.3	4
45	Validation of the vessel-specific leads (VSLs) for acute ischemia detection on a dataset with non-ischemic ST-segment deviation. , 2015, , .		3
46	Validation of the vessel-specific leads (VSLs) for detection of acute ischemia on a dataset with non-ischemic ST-segment deviation. Journal of Electrocardiology, 2016, 49, 800-806.	0.9	2
47	Prospective Multicenter Assessment of a New Intraprocedural Automated System for Localizing Idiopathic Ventricular Arrhythmia Origins. JACC: Clinical Electrophysiology, 2021, 7, 395-407.	3.2	2
48	Lead Theory. , 2010, , 347-374.		1
49	Electric and magnetic field due to propagated excitation in anisotropic myocardial tissue. , 1992, , .		0