Roy L. Johnston

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9105660/roy-l-johnston-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

264 12,534 51 102 g-index

279 13,483 4.6 6.7 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
264	Global minima and structural properties of Au Fe nanoalloys from a Mexican Enhanced Genetic Algorithm-based Density Functional Theory. <i>Chemical Physics Letters</i> , 2021 , 776, 138675	2.5	
263	Leveraging Hierarchical Self-Assembly Pathways for Realizing Colloidal Photonic Crystals. <i>ACS Nano</i> , 2020 , 14, 5348-5359	16.7	20
262	Effects of Hydration on the Conformational Behavior of Flexible Molecules with Two Charge Centers. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 5323-5330	2.8	1
261	Structural and magnetic properties of Co-Pt clusters: A spin-polarized density functional study. Journal of Magnetism and Magnetic Materials, 2020 , 503, 166651	2.8	3
26 0	DFT-Based Global Optimization of Sub-nanometer Ni B d Clusters. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 26583-26596	3.8	10
259	Can a Single Valence Electron Alter the Electrocatalytic Activity and Selectivity for CO2 Reduction on the Subnanometer Scale?. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 14591-14609	3.8	6
258	Tuning electronic and composition effects in ruthenium-copper alloy nanoparticles anchored on carbon nanofibers for rechargeable Li-CO2 batteries. <i>Chemical Engineering Journal</i> , 2019 , 375, 121978	14.7	26
257	Gold doping of tin clusters: exo- vs. endohedral complexes. <i>Nanoscale</i> , 2019 , 11, 12878-12888	7.7	5
256	In situ high-potential-driven surface restructuring of ternary AgPd-Pt aerogels with record-high performance improvement for formate oxidation electrocatalysis. <i>Nanoscale</i> , 2019 , 11, 14174-14185	7.7	45
255	Physico-Chemical Insights into Gas-Phase and Oxide-Supported Sub-Nanometre AuCu Clusters. Zeitschrift Fur Physikalische Chemie, 2019 , 233, 813-843	3.1	6
254	GIGA: a versatile genetic algorithm for free and supported clusters and nanoparticles in the presence of ligands. <i>Nanoscale</i> , 2019 , 11, 9042-9052	7.7	20
253	Altering CO binding on gold cluster cations by Pd-doping. <i>Nanoscale</i> , 2019 , 11, 16130-16141	7.7	14
252	Application of a parallel genetic algorithm to the global optimization of medium-sized Au P d sub-nanometre clusters. <i>European Physical Journal B</i> , 2018 , 91, 1	1.2	10
251	Gold-Copper Aerogels with Intriguing Surface Electronic Modulation as Highly Active and Stable Electrocatalysts for Oxygen Reduction and Borohydride Oxidation. <i>ChemSusChem</i> , 2018 , 11, 1354-1364	8.3	20
250	Modelling free and oxide-supported nanoalloy catalysts: comparison of bulk-immiscible Pd-Ir and Au-Rh systems and influence of a TiO support. <i>Faraday Discussions</i> , 2018 , 208, 53-66	3.6	14
249	A theoretical study on the geometry and spectroscopic properties of ground-state and local minima isomers of (CuS)n=2-6 clusters. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2018 , 97, 1-7	3	9
248	Pentameric PdAu and PdPt nanoparticles on the MgO(1 0 0) surface and their CO and O2 adsorption properties. <i>European Physical Journal B</i> , 2018 , 91, 1	1.2	5

247	Theoretical investigation of the structures of unsupported 38-atom CuPt clusters. <i>European Physical Journal B</i> , 2018 , 91, 1	1.2	7
246	Anionic cobalt-platinum-ethynyl (CoPt[12H) metal-organic subnanoparticles: a DFT modeling study. <i>European Physical Journal B</i> , 2018 , 91, 1	1.2	1
245	Theory as a driving force to understand reactions on nanoparticles: general discussion. <i>Faraday Discussions</i> , 2018 , 208, 147-185	3.6	1
244	The challenges of characterising nanoparticulate catalysts: general discussion. <i>Faraday Discussions</i> , 2018 , 208, 339-394	3.6	4
243	Chemical bonding in initial building blocks of semiconductors: Geometrical structures and optical absorption spectra of isolated and Cd species. <i>Journal of Chemical Physics</i> , 2018 , 149, 244308	3.9	6
242	Isomers and energy landscapes of micro-hydrated sulfite and chlorate clusters. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2018 , 376,	3	3
241	The DFT-genetic algorithm approach for global optimization of subnanometer bimetallic clusters. <i>Frontiers of Nanoscience</i> , 2018 , 12, 145-169	0.7	6
240	First principles global optimization of metal clusters and nanoalloys. <i>Advances in Physics: X</i> , 2018 , 3, S10	09999	15
239	AgSn intermetallics as highly selective and active oxygen reduction electrocatalysts in membraneless alkaline fuel cells. <i>Journal of Power Sources</i> , 2018 , 404, 106-117	8.9	17
238	Effect of palladium doping on the stability and fragmentation patterns of cationic gold clusters. <i>Physical Review A</i> , 2018 , 97,	2.6	21
237	DFT Global Optimization of Gas-Phase Subnanometer Ru P t Clusters. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 10773-10780	3.8	30
236	Activity Trends of Binary Silver Alloy Nanocatalysts for Oxygen Reduction Reaction in Alkaline Media. <i>Small</i> , 2017 , 13, 1603387	11	38
235	One-Pot Synthesis of Dealloyed AuNi Nanodendrite as a Bifunctional Electrocatalyst for Oxygen Reduction and Borohydride Oxidation Reaction. <i>Advanced Functional Materials</i> , 2017 , 27, 1700260	15.6	33
234	A DFT study of molecular adsorption on titania-supported AuRh nanoalloys. <i>Computational and Theoretical Chemistry</i> , 2017 , 1107, 142-151	2	14
233	Engineering Bimetallic Ag-Cu Nanoalloys for Highly Efficient Oxygen Reduction Catalysts: A Guideline for Designing Ag-Based Electrocatalysts with Activity Comparable to Pt/C-20. <i>Small</i> , 2017 , 13, 1603876	11	21
232	Bifunctional Electrocatalysts for Oxygen Reduction and Borohydride Oxidation Reactions Using AgSn Nanointermetallic for the Ensemble Effect. <i>ACS Applied Materials & Discounty of the Ensemble Effect.</i> ACS Applied Materials & Discounty of the Ensemble Effect. ACS Applied Materials & Discounty of the Ensemb	1-3:571	1 ¹⁸
231	DFT study of the structure, chemical ordering and molecular adsorption of Pd-Ir nanoalloys. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 27090-27098	3.6	12
230	Study of the stability of small AuRh clusters found by a Genetic Algorithm methodology. Computational and Theoretical Chemistry, 2017, 1119, 51-58	2	13

229	Adsorption of Acetonitrile, Benzene, and Benzonitrile on Pt(111): Single Crystal Adsorption Calorimetry and Density Functional Theory. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 21354-21363	3.8	14
228	Reduced Graphene Oxide decorated with Manganese Cobalt Oxide as Multifunctional Material for Mechanically Rechargeable and Hybrid ZincAir Batteries. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1700097	3.1	36
227	Size effect on the adsorption and dissociation of CO2 on Co nanoclusters. <i>Applied Surface Science</i> , 2017 , 396, 539-546	6.7	19
226	Investigation of the Structures and Energy Landscapes of Thiocyanate-Water Clusters. <i>Inorganics</i> , 2017 , 5, 20	2.9	3
225	Global Optimisation Strategies for Nanoalloys. <i>Challenges and Advances in Computational Chemistry and Physics</i> , 2017 , 1-52	0.7	
224	DFT global optimisation of gas-phase and MgO-supported sub-nanometre AuPd clusters. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 26133-26143	3.6	28
223	A comparative study of AumRhn (4 lm + n lb) clusters in the gas phase versus those deposited on (100) MgO. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 22122-8	3.6	10
222	Highly active and stable AuNi dendrites as an electrocatalyst for the oxygen reduction reaction in alkaline media. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17828-17837	13	30
221	A silverdopper metallic glass electrocatalyst with high activity and stability comparable to Pt/C for zincdir batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3527-3537	13	42
220	Charge and Compositional Effects on the 2DBD Transition in Octameric AgAu Clusters. <i>Zeitschrift Fur Physikalische Chemie</i> , 2016 , 230, 955-975	3.1	7
219	Global optimization of small bimetallic Pd-Co binary nanoalloy clusters: a genetic algorithm approach at the DFT level. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 6676-82	3.6	32
218	Application of a Parallel Genetic Algorithm to the Global Optimization of Gas-Phase and Supported Gold I ridium Sub-Nanoalloys. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 3759-3765	3.8	24
217	Pt-free silver nanoalloy electrocatalysts for oxygen reduction reaction in alkaline media. <i>Catalysis Science and Technology</i> , 2016 , 6, 3317-3340	5.5	75
216	A DFT study of molecular adsorption on Au R h nanoalloys. <i>Catalysis Science and Technology</i> , 2016 , 6, 6916-6931	5.5	20
215	Optical Absorption of Small Palladium-Doped Gold Clusters. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 364-372	3.1	22
214	Optical Absorption: Optical Absorption of Small Palladium-Doped Gold Clusters (Part. Part. Syst. Charact. 7/2016). <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 363-363	3.1	
213	Understanding and controlling the structure and segregation behaviour of AuRh nanocatalysts. <i>Scientific Reports</i> , 2016 , 6, 35226	4.9	37
212	Isomers and Energy Landscapes of Perchlorate-Water Clusters and a Comparison to Pure Water and Sulfate-Water Clusters. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 4008-15	2.8	18

211	Structural evolution and metallicity of lead clusters. <i>Nanoscale</i> , 2016 , 8, 11153-60	7.7	14
210	A Threshold-Minimization Scheme for Exploring the Energy Landscape of Biomolecules: Application to a Cyclic Peptide and a Disaccharide. <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 2471-9	6.4	5
209	O2 Dissociation on [email´protected] CoreBhell Particles for 3d, 4d, and 5d Transition Metals. Journal of Physical Chemistry C, 2015 , 119, 11031-11041	3.8	35
208	Silver-Copper Nanoalloy Catalyst Layer for Bifunctional Air Electrodes in Alkaline Media. <i>ACS Applied Materials & Discours (19</i> , 17782-91)	9.5	60
207	The Birmingham parallel genetic algorithm and its application to the direct DFT global optimisation of Ir(N) (N = 10-20) clusters. <i>Nanoscale</i> , 2015 , 7, 14032-8	7.7	56
206	Optical absorption spectra and structures of Ag +6 and Ag +8. <i>European Physical Journal D</i> , 2015 , 69, 1	1.3	15
205	Computational study of the adsorption of benzene and hydrogen on palladiumIridium nanoalloys. Journal of Organometallic Chemistry, 2015 , 792, 190-193	2.3	7
204	Structures and Energy Landscapes of Hydrated Sulfate Clusters. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 2377-84	6.4	27
203	Energy landscape exploration of sub-nanometre copper-silver clusters. <i>ChemPhysChem</i> , 2015 , 16, 1461	-93.2	18
202	Theoretical study of the structures and chemical ordering of cobalt-palladium nanoclusters. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 28311-21	3.6	32
201	The Nature of Bonding between Argon and Mixed Gold-Silver Trimers. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 10675-80	16.4	54
200	The Effect of Dispersion Correction on the Adsorption of CO on Metallic Nanoparticles. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 9703-9	2.8	48
199	Pool-BCGA: a parallelised generation-free genetic algorithm for the ab initio global optimisation of nanoalloy clusters. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 2104-12	3.6	72
198	Charge-induced dipole vs. relativistically enhanced covalent interactions in Ar-tagged Au-Ag tetramers and pentamers. <i>Journal of Chemical Physics</i> , 2015 , 143, 024310	3.9	31
197	Chiral effects on helicity studied via the energy landscape of short (D, L)-alanine peptides. <i>Journal of Chemical Physics</i> , 2015 , 143, 165103	3.9	7
196	Zum Charakter der chemischen Bindung von Argonatomen mit gemischten Gold/Silber-Trimeren. <i>Angewandte Chemie</i> , 2015 , 127, 10822-10827	3.6	6
195	Global optimization of 8-10 atom palladium-iridium nanoalloys at the DFT level. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 208-14	2.8	24
194	Pd(n)Ag(4-n) and Pd(n)Pt(4-n) clusters on MgO (100): a density functional surface genetic algorithm investigation. <i>Nanoscale</i> , 2014 , 6, 11777-88	7.7	31

193	Visualizing energy landscapes with metric disconnectivity graphs. <i>Journal of Computational Chemistry</i> , 2014 , 35, 1481-90	3.5	19
192	Support and Oxidation Effects on Subnanometer Palladium Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 3581-3589	3.8	19
191	Modeling nanoscale inhomogeneities for quantitative HAADF STEM imaging. <i>Physical Review Letters</i> , 2014 , 113, 075501	7.4	18
190	A theoretical study of the structures and optical spectra of helical copper-silver clusters. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 21039-48	3.6	12
189	DFT studies of oxygen dissociation on the 116-atom platinum truncated octahedron particle. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 26539-45	3.6	20
188	Energy Landscapes and Global Optimization of Self-Assembling Cyclic Peptides. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 1810-6	6.4	14
187	Structure and solid solution properties of Cu-Ag nanoalloys. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 275301	1.8	32
186	Optical and electronic properties of mixed Ag-Au tetramer cations. <i>Journal of Chemical Physics</i> , 2014 , 140, 054312	3.9	39
185	Comparative modelling of chemical ordering in palladium-iridium nanoalloys. <i>Journal of Chemical Physics</i> , 2014 , 141, 224307	3.9	21
184	Interfacial Structures and Bonding in Metal-Coated Gold Nanorods. <i>Structure and Bonding</i> , 2014 , 67-90	0.9	5
183	Communication: Global minimum search of Ag with molecular beam optical spectroscopy. Journal of Chemical Physics, 2014 , 141, 181104	3.9	13
182	Influence of spin-orbit effects on structures and dielectric properties of neutral lead clusters. Journal of Chemical Physics, 2014, 140, 164313	3.9	12
181	A DFT study of oxygen dissociation on platinum based nanoparticles. <i>Nanoscale</i> , 2014 , 6, 1153-1165	7.7	56
180	Effect of CO and H adsorption on the compositional structure of binary nanoalloys via DFT modeling. <i>European Physical Journal D</i> , 2013 , 67, 1	1.3	13
179	Theoretical Study of the Structures and Chemical Ordering of Palladium Gold Nanoalloys Supported on MgO(100). <i>Journal of Physical Chemistry C</i> , 2013 , 117, 293-301	3.8	27
178	Improving the Adsorption of Au Atoms and Nanoparticles on Graphite via Li Intercalation. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 22683-22695	3.8	4
177	Global minimum Pt(13)M(20) (M = Ag, Au, Cu, Pd) dodecahedral core-shell clusters. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 14261-6	2.8	26
176	Structures of small Ti- and V-doped Pt clusters: A GA-DFT study. <i>Computational and Theoretical Chemistry</i> , 2013 , 1021, 91-100	2	19

(2012-2013)

175	A density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters. <i>European Physical Journal D</i> , 2013 , 67, 1	1.3	37
174	Evaluation of photodissociation spectroscopy as a structure elucidation tool for isolated clusters: a case study of Ag4(+) and Au4(+). <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 19715-23	3.6	34
173	Determination of the energy landscape of Pd12Pt1 using a combined genetic algorithm and threshold energy method. <i>RSC Advances</i> , 2013 , 3, 11571	3.7	11
172	Direct atomic imaging and density functional theory study of the Au24Pd1 cluster catalyst. <i>Nanoscale</i> , 2013 , 5, 9620-5	7.7	32
171	Symmetrisation schemes for global optimisation of atomic clusters. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 3965-76	3.6	51
170	Protein structure optimization with a "Lamarckian" ant colony algorithm. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2013 , 10, 1548-52	3	3
169	DFT study of the structures and energetics of 98-atom AuPd clusters. <i>Nanoscale</i> , 2013 , 5, 646-52	7.7	52
168	Faceting preferences for Au(N) and Pd(N) nanoclusters with high-symmetry motifs. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 8392-400	3.6	9
167	Modelling the metal-on-top effect for Pd clusters on the MgO{100} substrate. <i>Journal of Chemical Physics</i> , 2013 , 138, 224703	3.9	10
166	Global optimization of clusters using electronic structure methods. <i>International Journal of Quantum Chemistry</i> , 2013 , 113, 2091-2109	2.1	155
165	Size-dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis. <i>ACS Nano</i> , 2013 , 7, 5808-17	16.7	125
164	An atomistic view of the interfacial structures of AuRh and AuPd nanorods. <i>Nanoscale</i> , 2013 , 5, 7452-7	7.7	42
163	A selective blocking method to control the overgrowth of Pt on Au nanorods. <i>Journal of the American Chemical Society</i> , 2013 , 135, 6554-61	16.4	72
162	Computational and experimental investigations into the conformations of cyclic tetra-peptides. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 8122-34	3.4	17
161	Exploring the Energy Landscapes of Cyclic Tetrapeptides with Discrete Path Sampling. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 650-657	6.4	32
160	Low-loss optical magnetic metamaterials on AgAu bimetallic fishnets. <i>Journal of Magnetism and Magnetic Materials</i> , 2012 , 324, 2625-2630	2.8	6
159	Development and optimization of a novel genetic algorithm for identifying nanoclusters from scanning transmission electron microscopy images. <i>Journal of Computational Chemistry</i> , 2012 , 33, 391-4	₀ 5	15
158	Electronic Properties of PtIIi Nanoalloys and the Effect on Reactivity for Use in PEMFCs. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 15241-15250	3.8	19

157	Overgrowth of Rhodium on Gold Nanorods. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 10312-10317	3.8	28
156	Metal Nanoparticles and Nanoalloys. Frontiers of Nanoscience, 2012, 3, 1-42	0.7	43
155	Theoretical studies of Pt-Ti nanoparticles for potential use as PEMFC electrocatalysts. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 3134-9	3.6	31
154	Interdependence of structure and chemical order in high symmetry (PdAu)N nanoclusters. <i>RSC Advances</i> , 2012 , 2, 5863	3.7	16
153	Predicting the Optical Properties of CoreBhell and Janus Segregated AuM Nanoparticles (M = Ag, Pd). <i>Journal of Physical Chemistry C</i> , 2012 , 116, 23616-23628	3.8	30
152	Tetrahelix conformations and transformation pathways in Pt1Pd12 clusters. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 5235-9	2.8	14
151	Dopant-induced 2D-3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom Au-Ag nanoalloys. <i>Nanoscale</i> , 2012 , 4, 1109-15	7.7	87
150	Nine-Atom Tin-Bismuth Clusters: Mimicking Excess Electrons by Element Substitution. <i>ChemPlusChem</i> , 2012 , 77, 532-535	2.8	15
149	Bismuth-doped tin clusters: experimental and theoretical studies of neutral Zintl analogues. Journal of Physical Chemistry A, 2012 , 116, 7756-64	2.8	28
148	Configuration of microbially synthesized Pd-Au nanoparticles studied by STEM-based techniques. <i>Nanotechnology</i> , 2012 , 23, 055701	3.4	10
147	Note: gas phase structures of bare Si8 and Si11 clusters from molecular beam electric deflection experiments. <i>Journal of Chemical Physics</i> , 2012 , 136, 186101	3.9	21
146	The Effect of Nonnative Interactions on the Energy Landscapes of Frustrated Model Proteins. Journal of Atomic, Molecular, and Optical Physics, 2012 , 2012, 1-9		3
145	Energy landscape and global optimization for a frustrated model protein. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 11525-9	3.4	29
144	Surface reconstruction precursor to melting in Au309 clusters. <i>AIP Advances</i> , 2011 , 1, 032105	1.5	5
143	Collective plasmon modes in a compositionally asymmetric nanoparticle dimer. <i>AIP Advances</i> , 2011 , 1, 032134	1.5	44
142	TEM characterization of chemically synthesized copper g old nanoparticles. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 4229-4237	2.3	13
141	Study of 40-atom PtAu clusters using a combined empirical potential-density functional approach. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2011 , 467, 2004-207	19 ^{2.4}	34
140	Truncated-octahedral copper-gold nanoparticles. <i>Journal of Physics: Conference Series</i> , 2010 , 241, 0120	8 6 .3	2

(2008-2010)

139	Theoretical and Experimental Studies of the Optical Properties of Conjoined GoldPalladium Nanospheres. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21247-21251	3.8	13
138	Structures and Chemical Ordering of Small CuAg Clusters. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 13255-13266	3.8	81
137	The Effect of CO and H Chemisorption on the Chemical Ordering of Bimetallic Clusters. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 19678-19686	3.8	41
136	Investigation of the structures and chemical ordering of small Pd-Au clusters as a function of composition and potential parameterisation. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 8607-19	3.6	53
135	Energetic and Structural Analysis of 102-Atom Pd P t Nanoparticles: A Composition-Dependent Study. <i>Journal of Computational and Theoretical Nanoscience</i> , 2010 , 7, 199-204	0.3	9
134	Structures and Stabilities of Platinum © old Nanoclusters. <i>Journal of Computational and Theoretical Nanoscience</i> , 2009 , 6, 857-866	0.3	41
133	Plasmonic Properties of Silver Nanoparticles on Two Substrates. <i>Plasmonics</i> , 2009 , 4, 147-152	2.4	29
132	Chemisorption of CO and H on Pd, Pt and Au nanoclusters: a DFT approach. <i>European Physical Journal D</i> , 2009 , 52, 131-134	1.3	35
131	Analysis of the X-ray absorption fine structure near the TiL 2, 3 edge in free titanium nanoclusters. <i>Journal of Surface Investigation</i> , 2009 , 3, 38-40	0.5	O
130	Small Copper Clusters in Ar Shells: A Study of Local Structure. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 9086-9091	3.8	18
129	Structural Insights into 19-Atom Pd/Pt Nanoparticles: A Computational Perspective. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 15904-15908	3.8	20
128	Theoretical Studies of Palladium©old Nanoclusters: PdAu Clusters with up to 50 Atoms. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 9141-9152	3.8	144
127	Theoretical study of Cu(38-n)Au(n) clusters using a combined empirical potential-density functional approach. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 10340-9	3.6	35
126	Three-dimensional atomic-scale structure of size-selected gold nanoclusters. <i>Nature</i> , 2008 , 451, 46-8	50.4	371
125	Nanoalloys: from theory to application. Preface. Faraday Discussions, 2008, 138, 9-10	3.6	15
124	Structures and optical properties of 4-5 nm bimetallic AgAu nanoparticles. <i>Faraday Discussions</i> , 2008 , 138, 363-73; discussion 421-34	3.6	93
123	Energetic, electronic, and thermal effects on structural properties of Ag-Au nanoalloys. <i>ACS Nano</i> , 2008 , 2, 165-75	16.7	53
122	Structural motifs, mixing, and segregation effects in 38-atom binary clusters. <i>Journal of Chemical Physics</i> , 2008 , 128, 134517	3.9	136

121	Dependence of the structures and chemical ordering of PdPt nanoalloys on potential parameters. Journal of Materials Chemistry, 2008 , 18, 4154		40
120	Charge transfer driven surface segregation of gold atoms in 13-atom AuAg nanoalloys and its relevance to their structural, optical and electronic properties. <i>Acta Materialia</i> , 2008 , 56, 2374-2380	8.4	80
119	Martensitic transformations in AgAu bimetallic core-shell nanoalloys. <i>Applied Physics Letters</i> , 2008 , 92, 023112	3.4	40
118	Nanoalloys: from theory to applications of alloy clusters and nanoparticles. <i>Chemical Reviews</i> , 2008 , 108, 845-910	68.1	2867
117	Searching for the optimum structures of alloy nanoclusters. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 640-9	3.6	170
116	Three-dimensional atomic-scale structure of size-selected nanoclusters on surfaces 2008 , 133-134		
115	Structure, Melting, and Thermal Stability of 55 Atom AgAu Nanoalloys. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 9157-9165	3.8	68
114	Structures and energetics of 98 atom Pd-Pt nanoalloys: potential stability of the Leary tetrahedron for bimetallic nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 5202-8	3.6	77
113	Combining Theory and Experiment to Characterize the Atomic Structures of Surface-Deposited Au309 Clusters <i>Journal of Physical Chemistry C</i> , 2007 , 111, 17846-17851	3.8	31
112	Advantages of a redefinition of variable-space in direct-space structure solution from powder x-ray diffraction data. <i>ChemPhysChem</i> , 2007 , 8, 650-3	3.2	14
111	Theoretical investigations of nanopatterning on the Au(1 1 1) surface. Surface Science, 2007, 601, 4175-	41.89	2
110	Theoretical study of structure and segregation in 38-atom Ag-Au nanoalloys. <i>European Physical Journal D</i> , 2007 , 43, 53-56	1.3	32
109	Structure and spectral characteristics of the nanoalloy Ag3Au10. <i>Applied Physics Letters</i> , 2007 , 90, 1531	233.4	50
108	Nanofinger growth on Au(111) arising from kinetic instability. <i>Physical Review B</i> , 2007 , 75,	3.3	4
107	A Mixed Structural Motif in 34-Atom PdPt Clusters. Journal of Physical Chemistry C, 2007, 111, 2936-294	1 3.8	86
106	Analyzing energy landscapes for folding model proteins. <i>Journal of Chemical Physics</i> , 2006 , 124, 204714	3.9	3
105	Topographical complexity of multidimensional energy landscapes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 18551-5	11.5	32
104	Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 8116-25	2.8	76

(2003-2006)

103	Characterizing potential surface topographies through the distribution of saddles and minima. Journal of Physical Chemistry A, 2006 , 110, 11543-50	2.8	9
102	Atom ordering in cuboctahedral NiAl nanoalloys. <i>Inorganica Chimica Acta</i> , 2006 , 359, 3649-3658	2.7	15
101	Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems. <i>Journal of Chemical Physics</i> , 2005 , 122, 194308	3.9	276
100	How many dimensions are required to approximate the potential energy landscape of a model protein?. <i>Journal of Chemical Physics</i> , 2005 , 122, 84714	3.9	49
99	Global optimization of bimetallic cluster structures. II. Size-matched Ag-Pd, Ag-Au, and Pd-Pt systems. <i>Journal of Chemical Physics</i> , 2005 , 122, 194309	3.9	180
98	Strategies for increasing the efficiency of a genetic algorithm for the structural optimization of nanoalloy clusters. <i>Journal of Computational Chemistry</i> , 2005 , 26, 1069-78	3.5	35
97	Developments in genetic algorithm techniques for structure solution from powder diffraction data. Zeitschrift Fur Kristallographie - Crystalline Materials, 2004 , 219, 838-846	1	63
96	Ammonium cyanate: a DFT study of crystal structure, rotational barriers and vibrational spectrum. <i>Molecular Physics</i> , 2004 , 102, 869-876	1.7	5
95	Development and optimisation of a novel genetic algorithm for studying model protein folding. <i>Theoretical Chemistry Accounts</i> , 2004 , 112, 163	1.9	22
94	Rationalizing the structural properties of bupivacaine basea local anestheticdirectly from powder X-ray diffraction data. <i>Journal of Pharmaceutical Sciences</i> , 2004 , 93, 667-74	3.9	9
93	An efficient algorithm for calculating whole-profile functions in crystal structure solution from powder diffraction data. <i>Chemical Physics Letters</i> , 2004 , 390, 394-398	2.5	4
92	Fundamental Developments in Direct-Space Techniques for Structure Solution from Powder Diffraction Data. <i>Materials Science Forum</i> , 2004 , 443-444, 11-22	0.4	
91	Powder Diffraction Indexing as a Pattern Recognition Problem: A New Approach for Unit Cell Determination Based on an Artificial Neural Network. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 711-71	<i>6</i> .8	9
90	Theoretical investigation of isomer stability in platinumpalladium nanoalloy clusters. <i>Journal of Materials Chemistry</i> , 2004 , 14, 1691-1704		79
89	Applications of Evolutionary Computation in Structure Determination from Diffraction Data. <i>Structure and Bonding</i> , 2004 , 55-94	0.9	12
88	Development of a Genetic Algorithm for Optimization of Nanoalloys. <i>Lecture Notes in Computer Science</i> , 2004 , 1316-1317	0.9	4
87	Structures, stabilities and ordering in Ni-Al nanoalloy clusters. <i>European Physical Journal D</i> , 2003 , 25, 41-55	1.3	57
86	Development of a multipopulation parallel genetic algorithm for structure solution from powder diffraction data. <i>Journal of Computational Chemistry</i> , 2003 , 24, 1766-74	3.5	55

85	Polymorphism of a novel sodium ion channel blocker. <i>Journal of Pharmaceutical Sciences</i> , 2003 , 92, 201	7 -2.6	3
84	Determination of main structural compositions of nanoalloy clusters of CuxAuy (x + y B0) using a genetic algorithm approach. <i>International Journal of Quantum Chemistry</i> , 2003 , 95, 112-125	2.1	51
83	Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries. <i>Dalton Transactions</i> , 2003 , 4193	4.3	491
82	Evolutionary techniques in atomistic simulation: thin films and nanoparticles. <i>Current Opinion in Solid State and Materials Science</i> , 2003 , 7, 3-12	12	19
81	Genetic Algorithms for the Geometry Optimization of Clusters and Nanoparticles. <i>Studies in Fuzziness and Soft Computing</i> , 2003 , 161-204	0.7	6
80	CH???O Hydrogen Bond Mediated Chain Reversal in a Peptide Containing a EAmino Acid Residue, Determined Directly from Powder X-ray Diffraction Data. <i>Angewandte Chemie</i> , 2002 , 114, 512-514	3.6	6
79	C-HtriplebondO hydrogen bond mediated chain reversal in a peptide containing a gamma-amino acid residue, determined directly from powder X-ray diffraction data. <i>Angewandte Chemie</i> - <i>International Edition</i> , 2002 , 41, 494-6	16.4	46
78	Geometry optimisation of aluminium clusters using a genetic algorithm. ChemPhysChem, 2002, 3, 408-1	153.2	43
77	Gaining insights into the evolutionary behaviour in genetic algorithm calculations, with applications in structure solution from powder diffraction data. <i>Chemical Physics Letters</i> , 2002 , 353, 185-194	2.5	12
76	A theoretical study of atom ordering in coppergold nanoalloy clusters. <i>Journal of Materials Chemistry</i> , 2002 , 12, 2913-2922		83
75	Theoretical study of CuAu nanoalloy clusters using a genetic algorithm. <i>Journal of Chemical Physics</i> , 2002 , 116, 1536-1550	3.9	306
74	Geometries and segregation properties of platinumpalladium nanoalloy clusters. <i>Dalton Transactions RSC</i> , 2002 , 4375		112
73	Global optimization analysis of water clusters (H2O)n (11?n?13) through a genetic evolutionary approach. <i>Journal of Chemical Physics</i> , 2002 , 116, 8327	3.9	40
7 2	Recent Advances in the Opportunities for Solving Molecular Crystal Structures Directly from Powder Diffraction Data. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 389, 123-129	0.5	3
71	Application of Genetic Algorithms in Nanoscience: Cluster Geometry Optimization. <i>Lecture Notes in Computer Science</i> , 2002 , 92-101	0.9	4
70	Recent advances in opportunities for solving molecular crystal structures directly from powder diffraction data: new insights in crystal engineering contexts. <i>CrystEngComm</i> , 2002 , 4, 356-367	3.3	11
69	Solid-state and solution phase reactivity of 10-hydroxy-10,9-boroxophenanthrene: a model building block for self-assembly processes. <i>New Journal of Chemistry</i> , 2002 , 26, 701-710	3.6	13
68	Passivated clusters: a theoretical investigation of the effect of surface ligation on cluster geometry. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 4168-4171	3.6	18

(2000-2001)

67	Structural Aspects of High-Efficiency Blue-Emitting 2,5-Bis(trimethylsilyl)thiophene-S,S-dioxide and Related Materials. <i>Journal of Solid State Chemistry</i> , 2001 , 161, 121-128	3.3	9
66	Structure Solution of Molecular Crystals from Powder Diffraction Data Using Genetic Algorithms: Opportunities in Academic and Industrial Research. <i>Materials Science Forum</i> , 2001 , 378-381, 38-46	0.4	3
65	Structure Determination of 4,4NTrimethylenedipyridine from Powder Diffraction Data. <i>Materials Science Forum</i> , 2001 , 378-381, 784-788	0.4	4
64	Solving Crystal Structures from Powder Diffraction Data using Genetic Algorithms. <i>Molecular Crystals and Liquid Crystals</i> , 2001 , 356, 469-481		1
63	Investigation of the structures of MgO clusters using a genetic algorithm. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 5024-5034	3.6	123
62	Ab initio structure determination of a peptideturn from powder X-ray diffraction data. <i>Chemical Communications</i> , 2001 , 1460-1461	5.8	22
61	Structural Rationalization Directly from Powder Diffraction Data: Intermolecular Aggregation in 2-(Methylsulfonyl)ethyl Succinimidyl Carbonate. <i>Crystal Growth and Design</i> , 2001 , 1, 425-428	3.5	3
60	A method for understanding characteristics of multi-dimensional hypersurfaces, illustrated by energy and powder profile R-factor hypersurfaces for molecular crystals. <i>Zeitschrift Fur Kristallographie - Crystalline Materials</i> , 2001 , 216, 187-189	1	4
59	Evolutionary Algorithms in Crystallographic Applications. <i>Methods and Principles in Medicinal Chemistry</i> , 2000 , 159-194	0.4	5
58	Structure Determination of an Oligopeptide Directly from Powder Diffraction Data. <i>Angewandte Chemie</i> , 2000 , 112, 4662-4665	3.6	11
57	Structure Determination of an Oligopeptide Directly from Powder Diffraction Data. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 4488-4491	16.4	52
56	Implementation of Lamarckian concepts in a Genetic Algorithm for structure solution from powder diffraction data. <i>Chemical Physics Letters</i> , 2000 , 321, 183-190	2.5	87
55	Definition of a vguiding functionNn global optimization: a hybrid approach combining energy and R-factor in structure solution from powder diffraction data. <i>Chemical Physics Letters</i> , 2000 , 317, 296-303	3 ^{2.5}	44
54	Systematic computational study of the geometrical dependence of deuterium quadrupole interaction parameters in an OIH?O?C hydrogen bonded system. <i>Chemical Physics</i> , 2000 , 256, 159-168	2.3	5
53	A genetic algorithm for the structural optimization of Morse clusters. <i>Theoretical Chemistry Accounts</i> , 2000 , 104, 123-130	1.9	115
52	Theoretical analysis of 17¶9-atom metal clusters using many-body potentials. <i>Dalton Transactions RSC</i> , 2000 , 307-316		19
51	Investigation of geometric shell aluminum clusters using the Gupta many-body potential. <i>Journal of Chemical Physics</i> , 2000 , 112, 4773-4778	3.9	39
50	Structure Determination of an Oligopeptide Directly from Powder Diffraction Data 2000 , 39, 4488		2

49	A new approach for indexing powder diffraction data based on whole-profile fitting and global optimization using a genetic algorithm. <i>Journal of Synchrotron Radiation</i> , 1999 , 6, 87-92	2.4	32
48	Empirical Potentials for Modeling Solids, Surfaces, and Clusters. <i>Journal of Solid State Chemistry</i> , 1999 , 145, 517-540	3.3	47
47	Neue Mößlichkeiten der Strukturermittlung aus Pulverbeugungsdaten Bestimmung der Kristallstruktur eines molekularen Systems mit zwlf variablen Torsionswinkeln. <i>Angewandte Chemie</i> , 1999 , 111, 860-864	3.6	15
46	Evolving Opportunities in Structure Solution from Powder Diffraction Data-Crystal Structure Determination of a Molecular System with Twelve Variable Torsion Angles. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 831-835	16.4	51
45	Structure determination of a steroid directly from powder diffraction data <i>Chemical Communications</i> , 1999 , 1677-1678	5.8	53
44	A Perspective on the Metal-Nonmetal Transition. <i>Solid State Physics</i> , 1999 , 52, 229-338	2	18
43	Neue Mößlichkeiten der Strukturermittlung aus Pulverbeugungsdaten Bestimmung der Kristallstruktur eines molekularen Systems mit zwlf variablen Torsionswinkeln 1999 , 111, 860		1
42	The Genetic Algorithm: Foundations and Apllications in Structure Solution from Powder Diffraction Data. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 1998 , 54, 632-645		150
41	Modelling aluminium clusters with an empirical many-body potential. <i>Chemical Physics</i> , 1998 , 236, 107-1	1 21 3	64
40	A Genetic Algorithm for Crystal Structure Solution from Powder Diffraction Data. <i>Journal of Chemical Research Synopses</i> , 1998 , 390-391		16
39	New Methodologies for Solving Crystal Structures from Powder Diffraction Data. <i>Molecular Crystals and Liquid Crystals</i> , 1998 , 313, 1-14		1
38	New Light on an Old Story: The Solid-State Transformation of Ammonium Cyanate into Urea. Journal of the American Chemical Society, 1998 , 120, 13274-13275	16.4	37
37	The development of metallic behaviour in clusters. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 1998 , 356, 211-230	3	71
36	An empirical many-body potential energy function for modelling ytterbium. <i>Journal of Physics Condensed Matter</i> , 1998 , 10, 9419-9429	1.8	1
35	Modeling calcium and strontium clusters with many-body potentials. <i>Journal of Chemical Physics</i> , 1997 , 107, 4674-4687	3.9	62
34	Mathematical cluster chemistry 1997 , 1-34		6
33	Modelling of surface relaxation and melting of aluminium. Surface Science, 1997, 373, 67-84	1.8	25
32	Ab initio calculation of 2H quadrupole coupling constants in molecular crystals: application to polymorphs of oxalic acid dihydrate. <i>Chemical Physics Letters</i> , 1997 , 276, 186-195	2.5	14

31	The application of a genetic algorithm for solving crystal structures from powder diffraction data. <i>Chemical Physics Letters</i> , 1997 , 280, 189-195	2.5	170
30	Global potentials for calcium and strontium solids. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 425		22
29	Theoretical study of the structures and stabilities of iron clusters. <i>Computational and Theoretical Chemistry</i> , 1995 , 341, 75-90		37
28	The photoelectron spectrum of thiazyl cyanide, NSCN. <i>Chemical Physics Letters</i> , 1995 , 233, 33-35	2.5	7
27	Empirical potential-energy function for calcium solids and clusters. <i>Physical Review B</i> , 1994 , 49, 3089-3	09373	14
26	Modelling transition metal surfaces with empirical potentials. <i>Surface Science</i> , 1994 , 304, 223-236	1.8	28
25	Carbon cluster structures and stabilities predicted from solid-state potentials. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1994 , 90, 3029		20
24	Potential-energy functions for Cu, Ag and Au solids and their application to clusters of these elements. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1993 , 89, 1659		19
23	Empirical many-body potential energy functions for iron. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 12073-12082		20
22	Potential energy functions for atomic solids. <i>Molecular Physics</i> , 1993 , 78, 1405-1422	1.7	17
21	Potential energy functions for atomic solids. <i>Molecular Physics</i> , 1992 , 76, 619-633	1.7	18
20	An empirical many-body potential-energy function for aluminum. Application to solid phases and microclusters. <i>Journal of Chemical Physics</i> , 1992 , 97, 7809-7821	3.9	26
19	Cluster structures and stabilities from solid-state potentials. Application to silicon clusters. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1992 , 88, 1229		39
18	Structure-Bonding Relationships in the Laves Phases. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 1992 , 616, 105-120	1.3	103
17	Potential energy functions for atomic solids. <i>Molecular Physics</i> , 1991 , 73, 265-282	1.7	30
16	Closed-shell three-connected clusters: topological and group-theoretical aspects. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1991 , 87, 3353		11
15	The kagom[het: Band theoretical and topological aspects. <i>Polyhedron</i> , 1990 , 9, 1901-1911	2.7	12
14	Relative electron donor strengths of tetrathiafulvene derivatives: effects of chemical substitutions and the molecular environment from a combined photoelectron and electrochemical study. <i>Journal of the American Chemical Society</i> , 1990 , 112, 3302-3307	16.4	97

13	The classification of tensor surface harmonic functions for clusters and coordination compounds. <i>Theoretica Chimica Acta</i> , 1989 , 75, 11-32		19
12	Superdense carbon, C8: supercubane or analog of .gammasilicon?. <i>Journal of the American Chemical Society</i> , 1989 , 111, 810-819	16.4	120
11	Allowed and forbidden nature of diamond- square-diamond degenerate rearrangements in polyhedral boranes-a general topological analysis. <i>Polyhedron</i> , 1988 , 7, 2437-2439	2.7	14
10	Synthesis and structural characterisation of a novel high-nuclearity gold E in cluster compound, [Au8(PPh3)7(SnCl3)]2[SnCl6]. <i>Journal of the Chemical Society Dalton Transactions</i> , 1988 , 1751-1756		20
9	Theoretical models of cluster bonding. Structure and Bonding, 1987, 29-87	0.9	119
8	A group theoretical paradigm for describing the skeletal molecular orbitals of cluster compounds. Part 1. Deltahedral clusters. <i>Journal of the Chemical Society Dalton Transactions</i> , 1987 , 647		24
7	A group theoretical paradigm for describing the skeletal molecular orbitals of cluster compounds. Part 2. Bispherical clusters. <i>Journal of the Chemical Society Dalton Transactions</i> , 1987 , 1445		23
6	The Pairing Principle in Tensor Surface Harmonic Theory: Definition of a general class of N-atom polar deltahedra with N skeletal electron pairs. <i>Polyhedron</i> , 1986 , 5, 2059-2061	2.7	22
5	Theoretical analysis of the bonding in octahedral transition-metal clusters containing .muacceptor and .mudonor bridging ligands and their nido and arachno derivatives. <i>Inorganic Chemistry</i> , 1986 , 25, 1661-1671	5.1	36
4	Molecular orbital calculations relevant to the hypercloso vs. iso-closo controversy in metallaboranes. <i>Inorganic Chemistry</i> , 1986 , 25, 3321-3323	5.1	85
3	General theoretical analysis of three-connected polyhedral molecules and their capped derivatives. Journal of Organometallic Chemistry, 1985 , 280, 407-418	2.3	28
2	General theoretical analysis of four-connected polyhedral molecules. <i>Journal of Organometallic Chemistry</i> , 1985 , 280, 419-428	2.3	27
1	Atomic and Molecular Clusters		80