
K Lance Gould

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9105523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A simulation study of a class of nonparametric test statistics: a close look of empirical distribution function-based tests. Communications in Statistics Part B: Simulation and Computation, 2023, 52, 1132-1148.	0.6	0
2	How shall we judge a PET flow model?. Journal of Nuclear Cardiology, 2022, 29, 2551-2554.	1.4	1
3	Retention models: â€~tis the gift to be simple. Journal of Nuclear Cardiology, 2022, 29, 2595-2598.	1.4	Ο
4	Prognostic value of microvascular resistance and its association to fractional flow reserve: a DEFINE-FLOW substudy. Open Heart, 2022, 9, e001981.	0.9	2
5	Mortality Prediction by Quantitative PET Perfusion Expressed as Coronary Flow Capacity With and Without Revascularization. JACC: Cardiovascular Imaging, 2021, 14, 1020-1034.	2.3	41
6	A fundamental principle of coronary pathophysiology for risk stratifying coronary artery disease. European Heart Journal Cardiovascular Imaging, 2021, 22, 647-649.	0.5	1
7	Reliability and Reproducibility of Absolute Myocardial Blood Flow: Does It Depend on the PET/CT Technology, the Vasodilator, and/or the Software?. Current Cardiology Reports, 2021, 23, 12.	1.3	4
8	Autoregulation of Coronary Blood Supply in Response to Demand. Journal of the American College of Cardiology, 2021, 77, 2335-2345.	1.2	19
9	Coronary Steal: Mechanisms of a Misnomer. Journal of the American Heart Association, 2021, 10, e021000.	1.6	6
10	Coronary flow capacity: where to next?. EuroIntervention, 2021, 17, e269-e270.	1.4	2
11	Combined Pressure and Flow Measurements to Guide Treatment of Coronary Stenoses. JACC: Cardiovascular Interventions, 2021, 14, 1904-1913.	1.1	22
12	Coronary Physiology and Quantitative Myocardial Perfusion. , 2021, , 161-259.		3
13	Distal Evaluation of Functional performance with Intravascular sensors to assess the Narrowing Effect—combined pressure and Doppler FLOW velocity measurements (DEFINE-FLOW) trial: Rationale and trial design. American Heart Journal, 2020, 222, 139-146.	1.2	15
14	FFR at high heart rate – Unexpected physiologic insights. International Journal of Cardiology, 2020, 317, 44-46.	0.8	0
15	Coronary Flow Capacity to Identify Stenosis Associated With Coronary Flow Improvement After Revascularization: A Combined Analysis From DEFINE FLOW and IDEAL. Journal of the American Heart Association, 2020, 9, e016130.	1.6	8
16	Coronary Physiology. JACC: Cardiovascular Imaging, 2020, 13, 1986-1988.	2.3	2
17	Pitfalls in quantitative myocardial PET perfusion II: Arterial input function. Journal of Nuclear Cardiology, 2020, 27, 397-409.	1.4	13
18	Pitfalls in quantitative myocardial PET perfusion I: Myocardial partial volume correction. Journal of Nuclear Cardiology, 2020, 27, 386-396.	1.4	9

#	Article	IF	CITATIONS
19	How Do PET Myocardial Blood Flow Reserve and FFR Differ?. Current Cardiology Reports, 2020, 22, 20.	1.3	9
20	Regional, Artery-Specific Thresholds of Quantitative Myocardial Perfusion by PET Associated with Reduced Myocardial Infarction and Death After Revascularization in Stable Coronary Artery Disease. Journal of Nuclear Medicine, 2019, 60, 410-417.	2.8	83
21	Integrating Coronary Physiology, Longitudinal Pressure, and Perfusion Gradients in CAD. Journal of the American College of Cardiology, 2019, 74, 1785-1788.	1.2	7
22	Quantitative myocardial perfusion positron emission tomography and caffeine revisited with new insights on major adverse cardiovascular events and coronary flow capacity. European Heart Journal Cardiovascular Imaging, 2019, 20, 751-762.	0.5	15
23	Fulminant Vascular and Cardiac Toxicity Associated with Tyrosine Kinase Inhibitor Sorafenib. Cardiovascular Toxicology, 2019, 19, 382-387.	1.1	17
24	Apples, oranges, or pears: unexpected insights in coronary pathophysiology. European Heart Journal Cardiovascular Imaging, 2019, 20, 14-17.	0.5	2
25	TAG, You're Out. JACC: Cardiovascular Imaging, 2019, 12, 334-337.	2.3	3
26	Same Lesion, Different Artery, DifferentÂFFR!?. JACC: Cardiovascular Imaging, 2019, 12, 718-721.	2.3	6
27	Coronary Physiology Beyond CoronaryÂFlowÂReserve in MicrovascularÂAngina. Journal of the American College of Cardiology, 2018, 72, 2642-2662.	1.2	101
28	Experimental to Clinical Coronary Physiology. Circulation Research, 2018, 123, 1124-1126.	2.0	4
29	Routine Clinical Quantitative Rest Stress Myocardial Perfusion for Managing Coronary Artery Disease. JACC: Cardiovascular Imaging, 2017, 10, 565-577.	2.3	85
30	Optimal Adenosine Stress for Maximum Stress Perfusion, Coronary Flow Reserve, and Pixel Distribution of Coronary Flow Capacity by Kolmogorov–Smirnov Analysis. Circulation: Cardiovascular Imaging, 2017, 10, .	1.3	13
31	Coronary CT Angiography With PETÂPerfusion Imaging. JACC: Cardiovascular Imaging, 2017, 10, 1371-1373.	2.3	Ο
32	What can intracoronary pressure measurements tell us about flow reserve? Pressureâ€Bounded coronary flow reserve and example application to the randomized DEFER trial. Catheterization and Cardiovascular Interventions, 2017, 90, 917-925.	0.7	16
33	Hydrostatic Forces. JACC: Cardiovascular Interventions, 2017, 10, 1596-1597.	1.1	4
34	Nitroglycerine and Angina. Circulation, 2017, 136, 35-38.	1.6	6
35	Optimizing quantitative myocardial perfusion by positron emission tomography for guiding CAD management. Journal of Nuclear Cardiology, 2017, 24, 1950-1954.	1.4	1
36	Approximate Truth. Journal of the American College of Cardiology, 2017, 70, 3097-3101.	1.2	7

#	Article	IF	CITATIONS
37	Imaging Microvascular Dysfunction and Mechanisms for Female-Male DifferencesÂin CAD. JACC: Cardiovascular Imaging, 2016, 9, 465-482.	2.3	68
38	Continuum of Vasodilator Stress FromÂRest to Contrast Medium toÂAdenosine Hyperemia for FractionalÂFlow Reserve Assessment. JACC: Cardiovascular Interventions, 2016, 9, 757-767.	1.1	129
39	Ischemia in Aortic Stenosis. Journal of the American College of Cardiology, 2016, 68, 698-701.	1.2	9
40	Fractional Flow Reserve Returns to Its Origins. Circulation: Cardiovascular Imaging, 2016, 9, .	1.3	15
41	Invasive FFR and Noninvasive CFR inÂtheÂEvaluation of Ischemia. Journal of the American College of Cardiology, 2016, 67, 2772-2788.	1.2	77
42	Intense Exercise and Native Collateral Function in Stable Moderate Coronary Artery Disease. Circulation, 2016, 133, 1431-1434.	1.6	5
43	Imaging Coronary Blood Flow in AS. Journal of the American College of Cardiology, 2016, 67, 1423-1426.	1.2	14
44	Coronary Blood Flow After Acute MI. JACC: Cardiovascular Interventions, 2016, 9, 614-617.	1.1	2
45	Quantitative Coronary Physiology for Clinical Management: the Imaging Standard. Current Cardiology Reports, 2016, 18, 9.	1.3	8
46	Patient Selection for Elective Revascularization to Reduce Myocardial Infarction and Mortality. Circulation: Cardiovascular Imaging, 2015, 8, .	1.3	37
47	Clinical Cardiac Positron Emission Tomography. Cardiovascular Medicine, 2015, , 263-281.	0.0	Ο
48	An Analysis of 3 Common CardioGen-82 82Rb Infusion System Injection Methods and Their Impact on Clinical Volume and Image Counts. Journal of Nuclear Medicine Technology, 2015, 43, 113-116.	0.4	3
49	Myocardial Bridges: Lessons in ClinicalÂCoronary Pathophysiology. JACC: Cardiovascular Imaging, 2015, 8, 705-709.	2.3	37
50	Repeatability of Fractional Flow Reserve Despite Variations in Systemic andÂCoronaryÂHemodynamics. JACC: Cardiovascular Interventions, 2015, 8, 1018-1027.	1.1	83
51	Physiologic Stenosis Severity, Binary Thinking, Revascularization, and "Hidden Reality― Circulation: Cardiovascular Imaging, 2015, 8, .	1.3	7
52	Regadenoson Versus Dipyridamole Hyperemia for Cardiac PET Imaging. JACC: Cardiovascular Imaging, 2015, 8, 438-447.	2.3	73
53	Exercise PET: More insight or more complex?. Journal of Nuclear Cardiology, 2015, 22, 1281-1284.	1.4	1
54	History and Development of Coronary Flow Reserve and Fractional Flow Reserve for Clinical Applications. Interventional Cardiology Clinics, 2015, 4, 397-410.	0.2	7

#	Article	IF	CITATIONS
55	Clinical Utility of Enhanced Relative Activity Recovery on Systolic Myocardial Perfusion SPECT: Lessons from PET. Journal of Nuclear Medicine, 2015, 56, 1882-1888.	2.8	2
56	Physiologic Severity of Diffuse Coronary Artery Disease. Circulation, 2015, 131, 4-6.	1.6	132
57	Multicenter Core Laboratory Comparison of the Instantaneous Wave-Free Ratio and Resting P /P With Fractional Flow Reserve. Journal of the American College of Cardiology, 2014, 63, 1253-1261.	1.2	301
58	Prognostic Value of FractionalÂFlowÂReserve. Journal of the American College of Cardiology, 2014, 64, 1641-1654.	1.2	513
59	A Black and White Response to the "Gray Zone―for Fractional Flow Reserve Measurements. JACC: Cardiovascular Interventions, 2014, 7, 227-228.	1.1	10
60	Physiology of endothelin in producing myocardial perfusion heterogeneity: A mechanistic study using darusentan and positron emission tomography. Journal of Nuclear Cardiology, 2013, 20, 835-844.	1.4	13
61	Anatomic Versus Physiologic Assessment of Coronary Artery Disease. Journal of the American College of Cardiology, 2013, 62, 1639-1653.	1.2	495
62	Reply. Journal of the American College of Cardiology, 2013, 62, 566-567.	1.2	4
63	Coronary Anatomy to Predict Physiology. Circulation: Cardiovascular Imaging, 2013, 6, 817-832.	1.3	79
64	Variation in Quantitative Myocardial Perfusion Due to Arterial Input Selection. JACC: Cardiovascular Imaging, 2013, 6, 559-568.	2.3	46
65	Myocardial perfusion models: A means or an end?. Journal of Nuclear Cardiology, 2013, 20, 20-22.	1.4	0
66	Does the Instantaneous Wave-Free Ratio Approximate the Fractional Flow Reserve?. Journal of the American College of Cardiology, 2013, 61, 1428-1435.	1.2	94
67	Standardized Hyperemic Stress for Fractional Flow Reserve. Circulation: Cardiovascular Interventions, 2013, 6, 602-603.	1.4	12
68	Is Discordance of Coronary Flow Reserve and Fractional Flow Reserve Due to Methodology or Clinically Relevant Coronary Pathophysiology?. JACC: Cardiovascular Imaging, 2012, 5, 193-202.	2.3	265
69	Imaging in Aortic Stenosis—Let the Data Talk. JACC: Cardiovascular Imaging, 2012, 5, 190-192.	2.3	3
70	Integrating Noninvasive Absolute Flow, Coronary Flow Reserve, and Ischemic Thresholds Into a Comprehensive Map of Physiological Severity. JACC: Cardiovascular Imaging, 2012, 5, 430-440.	2.3	197
71	Effective Dose of PET/CT in Informed Consent Forms. JACC: Cardiovascular Imaging, 2012, 5, 1184-1185.	2.3	0
72	Letter to the Editor regarding "PET: Is myocardial flow quantification a clinical reality?― Journal of Nuclear Cardiology, 2012, 19, 1243-1244.	1.4	2

#	Article	IF	CITATIONS
73	Economic Methods in the Century Trial—a Comprehensive Lifestyle Modification Study for Managing Coronary Artery Disease. Journal of Cardiovascular Translational Research, 2012, 5, 333-336.	1.1	2
74	Impact of Unexpected Factors on Quantitative Myocardial Perfusion and Coronary Flow Reserve in Young, Asymptomatic Volunteers. JACC: Cardiovascular Imaging, 2011, 4, 402-412.	2.3	112
75	Physiological Basis for Angina and ST-Segment Change. JACC: Cardiovascular Imaging, 2011, 4, 990-998.	2.3	117
76	Partial volume correction incorporating Rb-82 positron range for quantitative myocardial perfusion PET based on systolic-diastolic activity ratios and phantom measurements. Journal of Nuclear Cardiology, 2011, 18, 247-258.	1.4	25
77	Dipyridamole reversal using theophylline during aminophylline shortage. Journal of Nuclear Cardiology, 2011, 18, 1115.	1.4	7
78	Coronary Branch Steal. Circulation: Cardiovascular Imaging, 2010, 3, 701-709.	1.3	39
79	Shifted Helical Computed Tomography to Optimize Cardiac Positron Emission Tomography–Computed Tomography Coregistration: Quantitative Improvement and Limitations. Molecular Imaging, 2010, 9, 7290.2010.00015.	0.7	5
80	Percent stenosis in CAD—a flaw in current practice. Nature Reviews Cardiology, 2010, 7, 482-484.	6.1	10
81	Nuclear Cardiology: SPECT and PET. , 2010, , 219-250.		Ο
82	Shifted helical computed tomography to optimize cardiac positron emission tomography-computed tomography coregistration: quantitative improvement and limitations. Molecular Imaging, 2010, 9, 256-67.	0.7	2
83	Coronary Flow Reserve and Pharmacologic Stress Perfusion Imaging. JACC: Cardiovascular Imaging, 2009, 2, 664-669.	2.3	25
84	Does Coronary Flow Trump Coronary Anatomy?. JACC: Cardiovascular Imaging, 2009, 2, 1009-1023.	2.3	180
85	A 6 month randomized, double blind, placebo controlled, multi-center trial of high dose atorvastatin on myocardial perfusion abnormalities by positron emission tomography in coronary artery disease. American Heart Journal, 2008, 155, 245-253.	1.2	22
86	Reducing Radiation Dose in Rest–Stress Cardiac PET/CT by Single Poststress Cine CT for Attenuation Correction: Quantitative Validation. Journal of Nuclear Medicine, 2008, 49, 738-745.	2.8	32
87	Positron emission tomography in coronary artery disease. Current Opinion in Cardiology, 2007, 22, 422-428.	0.8	12
88	Frequent Diagnostic Errors in Cardiac PET/CT Due to Misregistration of CT Attenuation and Emission PET Images: A Definitive Analysis of Causes, Consequences, and Corrections. Journal of Nuclear Medicine, 2007, 48, 1112-1121.	2.8	257
89	Not All Randomized Trials Are EqualâŽâŽEditorials published in the Journal of American College of Cardiologyreflect the views of the authors and do not necessarily represent the views of JACCor the American College of Cardiology Journal of the American College of Cardiology, 2007, 50, 2013-2015.	1.2	7
90	Does coronary vasodilation after adenosine override endothelin-1-induced coronary vasoconstriction?. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H496-H502.	1.5	11

#	Article	IF	CITATIONS
91	Mechanisms of progression and regression of coronary artery disease by PET related to treatment intensity and clinical events at long-term follow-up. Journal of Nuclear Medicine, 2006, 47, 59-67.	2.8	42
92	Assessing progression or regression of CAD: The role of perfusion imaging. Journal of Nuclear Cardiology, 2005, 12, 625-638.	1.4	27
93	Clinical evaluation of a new concept: resting myocardial perfusion heterogeneity quantified by markovian analysis of PET identifies coronary microvascular dysfunction and early atherosclerosis in 1,034 subjects. Journal of Nuclear Medicine, 2005, 46, 1427-37.	2.8	42
94	Common artifacts in PET myocardial perfusion images due to attenuation-emission misregistration: clinical significance, causes, and solutions. Journal of Nuclear Medicine, 2004, 45, 1029-39.	2.8	77
95	Combined intense lifestyle and pharmacologic lipid treatment further reduce coronary events and myocardial perfusion abnormalities compared with usual-care cholesterol-lowering drugs in coronary artery disease. Journal of the American College of Cardiology, 2003, 41, 263-272.	1.2	117
96	Why Angina in Aortic Stenosis With Normal Coronary Arteriograms?. Circulation, 2003, 107, 3121-3123.	1.6	96
97	A precise, three-dimensional atlas of myocardial perfusion correlated with coronary arteriographic anatomy. Journal of Nuclear Cardiology, 2001, 8, 580-590.	1.4	24
98	High Prevalence of Myocardial Perfusion Abnormalities on Positron Emission Tomography in Asymptomatic Persons With a Parent or Sibling With Coronary Artery Disease. Circulation, 2001, 103, 496-501.	1.6	60
99	Abnormal Epicardial Coronary Resistance in Patients With Diffuse Atherosclerosis but "Normal― Coronary Angiography. Circulation, 2001, 104, 2401-2406.	1.6	427
100	Frequency and Clinical Implications of Fluid Dynamically Significant Diffuse Coronary Artery Disease Manifest as Graded, Longitudinal, Base-to-Apex Myocardial Perfusion Abnormalities by Noninvasive Positron Emission Tomography. Circulation, 2000, 101, 1931-1939.	1.6	172
101	Pressure-Derived Fractional Flow Reserve to Assess Serial Epicardial Stenoses. Circulation, 2000, 101, 1840-1847.	1.6	241
102	Why Angina Pectoris in Aortic Stenosis. Circulation, 1997, 95, 790-792.	1.6	24
103	Changes in Myocardial Perfusion Abnormalities by Positron Emission Tomography After Long-term, Intense Risk Factor Modification. JAMA - Journal of the American Medical Association, 1995, 274, 894.	3.8	229
104	Can Percutaneous Transluminal Coronary Angioplasty be Considered Successful for Managing Coronary Artery Disease?. Journal of Interventional Cardiology, 1991, 4, 257-260.	0.5	3
105	Coronary flow reserve as a physiologic measure of stenosis severity. Journal of the American College of Cardiology, 1990, 15, 459-474.	1.2	494
106	Clinical cardiac PET using generator-produced Rb-82: A review. CardioVascular and Interventional Radiology, 1989, 12, 245-251.	0.9	28
107	A Slanting Light-Guide Analog Decoding High Resolution Detector for Positron Emission Tomography Camera. IEEE Transactions on Nuclear Science, 1987, 34, 280-284.	1.2	4
108	Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. Journal of the American College of Cardiology, 1986, 7, 103-113.	1.2	318

#	Article	IF	CITATIONS
109	Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced Rubidium-82. Journal of the American College of Cardiology, 1986, 7, 775-789.	1.2	269
110	Preliminary Results with TOFPET. IEEE Transactions on Nuclear Science, 1983, 30, 739-743.	1.2	10
111	Noninvasive assessment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilatation. American Journal of Cardiology, 1979, 43, 200-208.	0.7	194