Thierry Bouwmans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9105177/publications.pdf Version: 2024-02-01

THIERRY ROUMMANS

#	Article	IF	CITATIONS
1	Reconstruction of Time-Varying Graph Signals via Sobolev Smoothness. IEEE Transactions on Signal and Information Processing Over Networks, 2022, 8, 201-214.	2.8	14
2	A Novel Algorithm Based on a Common Subspace Fusion for Visual Object Tracking. IEEE Access, 2022, 10, 24690-24703.	4.2	7
3	SemiSegSAR: A Semi-Supervised Segmentation Algorithm for Ship SAR Images. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	9
4	The Emerging Field of Graph Signal Processing for Moving Object Segmentation. Communications in Computer and Information Science, 2021, , 31-45.	0.5	18
5	Robust Foreground Segmentation inÂRGBD Data from Complex Scenes UsingÂAdversarial Networks. Communications in Computer and Information Science, 2021, , 3-16.	0.5	0
6	GraphBGS: Background Subtraction via Recovery of Graph Signals. , 2021, , .		12
7	Moving Objects Detection in Video Processing:. , 2021, , 171-181.		0
8	Moving Object Detection for Event-based Vision using Graph Spectral Clustering. , 2021, , .		24
9	Background/Foreground Separation: Guided Attention based Adversarial Modeling (GAAM) versus Robust Subspace Learning Methods. , 2021, , .		1
10	Graph CNN for Moving Object Detection in Complex Environments from Unseen Videos. , 2021, , .		14
11	Background subtraction in real applications: Challenges, current models and future directions. Computer Science Review, 2020, 35, 100204.	15.3	171
12	Moving objects detection with a moving camera: A comprehensive review. Computer Science Review, 2020, 38, 100310.	15.3	56
13	Dual Information-Based Background Model For Moving Object Detection. , 2020, , .		1
14	On the Minimization of Sobolev Norms of Time-Varying Graph Signals: Estimation of New Coronavirus Disease 2019 Cases. , 2020, , .		9
15	Semi-Supervised Background Subtraction Of Unseen Videos: Minimization Of The Total Variation Of Graph Signals. , 2020, , .		19
16	Dynamic Background Subtraction Using Least Square Adversarial Learning. , 2020, , .		6
17	Deep detector classifier (DeepDC) for moving objects segmentation and classification in video surveillance. IET Image Processing, 2020, 14, 1490-1501.	2.5	23
18	DEEP LEARNING BASED BACKGROUND SUBTRACTION: A SYSTEMATIC SURVEY. , 2020, , 51-73.		5

#	Article	IF	CITATIONS
19	Estimation of the Hidden Message Length in Steganography: A Deep Learning Approach. Lecture Notes in Computer Science, 2020, , 333-341.	1.3	0
20	From Moving Objects Detection to Classification and Recognition: A Review for Smart Environments. , 2020, , 289-316.		3
21	Graph Moving Object Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, PP, 1-1.	13.9	19
22	Towards an Effective Approach for Face Recognition with DCGANs Data Augmentation. Lecture Notes in Computer Science, 2020, , 463-475.	1.3	2
23	Unsupervised Adversarial Learning for Dynamic Background Modeling. Communications in Computer and Information Science, 2020, , 248-261.	O.5	4
24	Introduction to the Special Issue on Multimodal Machine Learning for Human Behavior Analysis. ACM Transactions on Multimedia Computing, Communications and Applications, 2020, 16, 1-2.	4.3	1
25	Deep neural network concepts for background subtraction:A systematic review and comparative evaluation. Neural Networks, 2019, 117, 8-66.	5.9	250
26	Complete Moving Object Detection in the Context of Robust Subspace Learning. , 2019, , .		4
27	Moving Object Detection in Complex Scene Using Spatiotemporal Structured-Sparse RPCA. IEEE Transactions on Image Processing, 2019, 28, 1007-1022.	9.8	82
28	Moving Objects Segmentation Based on DeepSphere in Video Surveillance. Lecture Notes in Computer Science, 2019, , 307-319.	1.3	7
29	Visual Surveillance of Human Activities: Background Subtraction Challenges and Methods. , 2019, , 43-66.		1
30	Visual Surveillance of Natural Environments: Background Subtraction Challenges and Methods. , 2019, , 67-86.		1
31	On the role and the importance of features for background modeling and foreground detection. Computer Science Review, 2018, 28, 26-91.	15.3	78
32	New trends on moving object detection in video images captured by a moving camera: A survey. Computer Science Review, 2018, 28, 157-177.	15.3	172
33	Spatiotemporal Low-Rank Modeling for Complex Scene Background Initialization. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28, 1315-1329.	8.3	68
34	Introduction to the Issue on Robust Subspace Learning and Tracking: Theory, Algorithms, and Applications. IEEE Journal on Selected Topics in Signal Processing, 2018, 12, 1127-1130.	10.8	9
35	Robust PCA and Robust Subspace Tracking: A Comparative Evaluation. , 2018, , .		22
36	Detection of Moving Objects. Journal of Imaging, 2018, 4, 93.	3.0	0

#	Article	IF	CITATIONS
37	Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery. IEEE Signal Processing Magazine, 2018, 35, 32-55.	5.6	249
38	Rethinking PCA for Modern Data Sets: Theory, Algorithms, and Applications [Scanning the Issue]. Proceedings of the IEEE, 2018, 106, 1274-1276.	21.3	58
39	On the Applications of Robust PCA in Image and Video Processing. Proceedings of the IEEE, 2018, 106, 1427-1457.	21.3	177
40	GMM Background Modeling Using Divergence-Based Weight Updating. Lecture Notes in Computer Science, 2017, , 282-290.	1.3	6
41	Guest Editorial Introduction to the Special Issue on Group and Crowd Behavior Analysis for Intelligent Multicamera Video Surveillance. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27, 405-408.	8.3	25
42	Editorial–Scene background modeling and initialization. Pattern Recognition Letters, 2017, 96, 1-2.	4.2	4
43	Scene background initialization: A taxonomy. Pattern Recognition Letters, 2017, 96, 3-11.	4.2	69
44	Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset. Computer Science Review, 2017, 23, 1-71.	15.3	259
45	Superpixel-based online wagging one-class ensemble for feature selection in foreground/background separation. Pattern Recognition Letters, 2017, 100, 144-151.	4.2	15
46	Background–Foreground Modeling Based on Spatiotemporal Sparse Subspace Clustering. IEEE Transactions on Image Processing, 2017, 26, 5840-5854.	9.8	103
47	Moving Object Detection on RGB-D Videos Using Graph Regularized Spatiotemporal RPCA. Lecture Notes in Computer Science, 2017, , 230-241.	1.3	20
48	Multi-feature fusion based background subtraction for video sequences with strong background changes. , 2017, , .		0
49	Improving OR-PCA via smoothed spatially-consistent low-rank modeling for background subtraction. , 2017, , .		8
50	SBMI-LTD. , 2017, , .		8
51	Human Pose Estimation from Monocular Images: A Comprehensive Survey. Sensors, 2016, 16, 1966.	3.8	97
52	Motion-Aware Graph Regularized RPCA for background modeling of complex scenes. , 2016, , .		28
53	Online Weighted One-Class Ensemble for feature selection in background/foreground separation. , 2016, , .		9
54	LRSLibrary: Low-Rank and Sparse Tools for Background Modeling and Subtraction in Videos. , 2016, , 426-440.		38

#	Article	IF	CITATIONS
55	Stochastic RPCA for Background/Foreground Separation. , 2016, , 457-480.		Ο
56	Double-constrained RPCA based on saliency maps for foreground detection in automated maritime surveillance. , 2015, , .		39
57	Online Stochastic Tensor Decomposition for Background Subtraction in Multispectral Video Sequences. , 2015, , .		48
58	Background Subtraction via Superpixel-Based Online Matrix Decomposition with Structured Foreground Constraints. , 2015, , .		40
59	Stochastic Decomposition into Low Rank and Sparse Tensor for Robust Background Subtraction. , 2015, , .		21
60	OR-PCA with MRF for Robust Foreground Detection in Highly Dynamic Backgrounds. Lecture Notes in Computer Science, 2015, , 284-299.	1.3	11
61	OR-PCA with dynamic feature selection for robust background subtraction. , 2015, , .		23
62	Depth extended online RPCA with spatiotemporal constraints for robust background subtraction. , 2015, , .		14
63	Combining ARF and OR-PCA for Robust Background Subtraction of Noisy Videos. Lecture Notes in Computer Science, 2015, , 340-351.	1.3	11
64	Robust background subtraction to global illumination changes via multiple features-based online robust principal components analysis with Markov random field. Journal of Electronic Imaging, 2015, 24, 043011.	0.9	19
65	Comparison of Matrix Completion Algorithms for Background Initialization in Videos. Lecture Notes in Computer Science, 2015, , 510-518.	1.3	16
66	An eXtended Center-Symmetric Local Binary Pattern for Background Modeling and Subtraction in Videos. , 2015, , .		89
67	Incremental and Multi-feature Tensor Subspace Learning Applied for Background Modeling and Subtraction. Lecture Notes in Computer Science, 2014, , 94-103.	1.3	33
68	Robust PCA via Principal Component Pursuit: A review for a comparative evaluation in video surveillance. Computer Vision and Image Understanding, 2014, 122, 22-34.	4.7	370
69	Special issue on background modeling for foreground detection in real-world dynamic scenes. Machine Vision and Applications, 2014, 25, 1101-1103.	2.7	14
70	Traditional and recent approaches in background modeling for foreground detection: An overview. Computer Science Review, 2014, 11-12, 31-66.	15.3	556
71	Traditional Approaches in Background Modeling for Static Cameras. , 2014, , 1-1-1-54.		4
72	Recent Approaches in Background Modeling for Static Cameras. , 2014, , 2-1-2-40.		0

#	Article	IF	CITATIONS
73	Foreground detection based on low-rank and block-sparse matrix decomposition. , 2012, , .		48
74	Background subtraction via incremental maximum margin criterion: a discriminative subspace approach. Machine Vision and Applications, 2012, 23, 1083-1101.	2.7	30
75	A Fuzzy Background Modeling Approach for Motion Detection in Dynamic Backgrounds. Communications in Computer and Information Science, 2012, , 177-185.	0.5	49
76	Foreground Detection by Robust PCA Solved via a Linearized Alternating Direction Method. Lecture Notes in Computer Science, 2012, , 115-122.	1.3	11
77	Moving Object Detection via Robust Low Rank Matrix Decomposition with IRLS Scheme. Lecture Notes in Computer Science, 2012, , 665-674.	1.3	15
78	Background Modeling via Incremental Maximum Margin Criterion. Lecture Notes in Computer Science, 2011, , 394-403.	1.3	2
79	Recent Advanced Statistical Background Modeling for Foreground Detection - A Systematic Survey. Recent Patents on Computer Science, 2011, 4, 147-176.	0.5	92
80	Recent Advanced Statistical Background Modeling for Foreground Detection - A Systematic Survey. Recent Patents on Computer Science, 2011, 4, 147-176.	0.5	138
81	Background Modeling using Mixture of Gaussians for Foreground Detection - A Survey. Recent Patents on Computer Science, 2010, 1, 219-237.	0.5	110
82	Subspace Learning for Background Modeling: A Survey. Recent Patents on Computer Science, 2010, 2, 223-234.	0.5	20
83	Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos. , 2009, , .		30
84	STATISTICAL BACKGROUND MODELING FOR FOREGROUND DETECTION: A SURVEY. , 2009, , 181-199.		73
85	Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos. , 2009, , .		2
86	Subspace Learning for Background Modeling: A Survey. Recent Patents on Computer Science, 2009, 2, 223-234.	0.5	71
87	Type-2 Fuzzy Mixture of Gaussians Model: Application to Background Modeling. Lecture Notes in Computer Science, 2008, , 772-781.	1.3	66
88	A fuzzy approach for background subtraction. , 2008, , .		31
89	Fuzzy foreground detection for infrared videos. , 2008, , .		5
90	Fuzzy integral for moving object detection. , 2008, , .		72

6

#	Article	IF	CITATIONS
91	Foreground Detection Using the Choquet Integral. , 2008, , .		22
92	VORTICAL STRUCTURES ANALYSIS IN JET FLOWS USING A CLASSICAL 2D-PIV SYSTEM AND TIME RESOLVED VISUALIZATION IMAGE PROCESSING. Journal of Flow Visualization and Image Processing, 2008, 15, 275-300.	0.5	7
93	Background Modeling using Mixture of Gaussians for Foreground Detection - A Survey. Recent Patents on Computer Science, 2008, 1, 219-237.	0.5	360
94	Comparison of Background Subtraction Methods for a Multimedia Application. , 2007, , .		20
95	Alive Fishes Species Characterization from Video Sequences. Lecture Notes in Computer Science, 2002, , 689-698.	1.3	4
96	A new stereomatching algorithm based on linear features and the fuzzy integral. Pattern Recognition Letters, 2001, 22, 133-146.	4.2	5
97	Extraction of line segments from fuzzy images. Pattern Recognition Letters, 2001, 22, 1405-1418.	4.2	9
98	Multi sensory system for the recovery of 3D structure; industrial applications. , 0, , .		2
99	A fuzzy model in trinocular vision matching. , 0, , .		0
100	Robust Principal Component Analysis for Background Subtraction: Systematic Evaluation and Comparative Analysis. , 0, , .		53
101	Handbook of Robust Low-Rank and Sparse Matrix Decomposition. , 0, , .		59