## Kasper Moth-Poulsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9104982/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Synthesis, characterization and computational evaluation of bicyclooctadienes towards molecular solar thermal energy storage. Chemical Science, 2022, 13, 834-841.                            | 3.7  | 14        |
| 2  | Thermo-optical performance of molecular solar thermal energy storage films. Applied Energy, 2022, 310, 118541.                                                                                | 5.1  | 11        |
| 3  | Approaching the Spin-Statistical Limit in Visible-to-Ultraviolet Photon Upconversion. Journal of the<br>American Chemical Society, 2022, 144, 3706-3716.                                      | 6.6  | 45        |
| 4  | Chip-scale solar thermal electrical power generation. Cell Reports Physical Science, 2022, 3, 100789.                                                                                         | 2.8  | 18        |
| 5  | A rechargeable molecular solar thermal system below 0 °C. Chemical Science, 2022, 13, 6950-6958.                                                                                              | 3.7  | 21        |
| 6  | Status and challenges for molecular solar thermal energy storage system based devices. Chemical Society Reviews, 2022, 51, 7313-7326.                                                         | 18.7 | 40        |
| 7  | Single molecule electronic devices with carbon-based materials: status and opportunity. Nanoscale, 2021, 13, 659-671.                                                                         | 2.8  | 18        |
| 8  | Photon upconverting bioplastics with high efficiency and in-air durability. Journal of Materials<br>Chemistry C, 2021, 9, 11655-11661.                                                        | 2.7  | 13        |
| 9  | Photoisomerization Efficiency of a Solar Thermal Fuel in the Strong Coupling Regime. Advanced Functional Materials, 2021, 31, 2010737.                                                        | 7.8  | 32        |
| 10 | Highly Permeable Fluorinated Polymer Nanocomposites for Plasmonic Hydrogen Sensing. ACS Applied<br>Materials & Interfaces, 2021, 13, 21724-21732.                                             | 4.0  | 17        |
| 11 | Intramolecular Triplet–Triplet Annihilation Photon Upconversion in Diffusionally Restricted<br>Anthracene Polymer. Journal of Physical Chemistry B, 2021, 125, 6255-6263.                     | 1.2  | 19        |
| 12 | Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein<br>Orientation in Biosensing Devices. Angewandte Chemie - International Edition, 2021, 60, 20184-20189. | 7.2  | 15        |
| 13 | Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein<br>Orientation in Biosensing Devices. Angewandte Chemie, 2021, 133, 20346-20351.                        | 1.6  | 3         |
| 14 | Robust Colloidal Synthesis of Palladium–Gold Alloy Nanoparticles for Hydrogen Sensing. ACS Applied<br>Materials & Interfaces, 2021, 13, 45758-45767.                                          | 4.0  | 7         |
| 15 | Liquidâ€Based Multijunction Molecular Solar Thermal Energy Collection Device. Advanced Science, 2021, 8, e2103060.                                                                            | 5.6  | 27        |
| 16 | Catalytically active and thermally stable core–shell gold–silica nanorods for CO oxidation. RSC<br>Advances, 2021, 11, 11642-11650.                                                           | 1.7  | 3         |
| 17 | Synthesis of highly monodisperse Pd nanoparticles using a binary surfactant combination and sodium oleate as a reductant. Nanoscale Advances, 2021, 3, 2481-2487.                             | 2.2  | 3         |
| 18 | Investigation of the Structural and Thermochemical Properties of [2.2.2]-Bicyclooctadiene<br>Photoswitches. Journal of Physical Chemistry A, 2021, 125, 10330-10339.                          | 1.1  | 8         |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Storing energy with molecular photoisomers. Joule, 2021, 5, 3116-3136.                                                                                                                                                                     | 11.7 | 86        |
| 20 | Innenrücktitelbild: A Memristive Element Based on an Electrically Controlled Singleâ€Molecule<br>Reaction (Angew. Chem. 28/2020). Angewandte Chemie, 2020, 132, 11767-11767.                                                               | 1.6  | 0         |
| 21 | Engineering of Norbornadiene/Quadricyclane Photoswitches for Molecular Solar Thermal Energy Storage Applications. Accounts of Chemical Research, 2020, 53, 1478-1487.                                                                      | 7.6  | 91        |
| 22 | A Nonâ€Conjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells.<br>Angewandte Chemie, 2020, 132, 20007-20012.                                                                                              | 1.6  | 16        |
| 23 | A Nonâ€Conjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells.<br>Angewandte Chemie - International Edition, 2020, 59, 19835-19840.                                                                       | 7.2  | 105       |
| 24 | Covalent incorporation of diphenylanthracene in oxotriphenylhexanoate organogels as a quasi-solid photon upconversion matrix. Journal of Chemical Physics, 2020, 153, 214705.                                                              | 1.2  | 11        |
| 25 | Bulk-Processed Pd Nanocube–Poly(methyl methacrylate) Nanocomposites as Plasmonic Plastics for<br>Hydrogen Sensing. ACS Applied Nano Materials, 2020, 3, 8438-8445.                                                                         | 2.4  | 20        |
| 26 | Microwaveâ€heated γâ€Alumina Applied to the Reduction of Aldehydes to Alcohols. ChemCatChem, 2020, 12,<br>6344-6355.                                                                                                                       | 1.8  | 6         |
| 27 | Triplet–triplet annihilation based near infrared to visible molecular photon upconversion. Chemical<br>Society Reviews, 2020, 49, 6529-6554.                                                                                               | 18.7 | 181       |
| 28 | Evolution from Tunneling to Hopping Mediated Triplet Energy Transfer from Quantum Dots to Molecules. Journal of the American Chemical Society, 2020, 142, 17581-17588.                                                                     | 6.6  | 28        |
| 29 | Constructing a library of metal and metal–oxide nanoparticle heterodimers through colloidal<br>assembly. Nanoscale, 2020, 12, 11297-11305.                                                                                                 | 2.8  | 6         |
| 30 | Photo- and Collision-Induced Isomerization of a Charge-Tagged Norbornadiene–Quadricyclane System.<br>Journal of Physical Chemistry Letters, 2020, 11, 6045-6050.                                                                           | 2.1  | 15        |
| 31 | Photochemical Phase Transitions Enable Coharvesting of Photon Energy and Ambient Heat for<br>Energetic Molecular Solar Thermal Batteries That Upgrade Thermal Energy. Journal of the American<br>Chemical Society, 2020, 142, 12256-12264. | 6.6  | 96        |
| 32 | Impact of Surfactants and Stabilizers on Palladium Nanoparticle–Hydrogen Interaction Kinetics:<br>Implications for Hydrogen Sensors. ACS Applied Nano Materials, 2020, 3, 2647-2653.                                                       | 2.4  | 24        |
| 33 | A Memristive Element Based on an Electrically Controlled Singleâ€Molecule Reaction. Angewandte<br>Chemie - International Edition, 2020, 59, 11641-11646.                                                                                   | 7.2  | 37        |
| 34 | Donor-Acceptor Substituted Benzo-, Naphtho- and Phenanthro-Fused Norbornadienes. Molecules, 2020, 25, 322.                                                                                                                                 | 1.7  | 18        |
| 35 | Synthesis of Palladium Nanodendrites Using a Mixture of Cationic and Anionic Surfactants. Langmuir, 2020, 36, 1745-1753.                                                                                                                   | 1.6  | 17        |
| 36 | Establishing linear-free-energy relationships for the quadricyclane-to-norbornadiene reaction.<br>Organic and Biomolecular Chemistry, 2020, 18, 2113-2119.                                                                                 | 1.5  | 6         |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Electrochemically controlled energy release from a norbornadiene-based solar thermal fuel:<br>increasing the reversibility to 99.8% using HOPG as the electrode material. Journal of Materials<br>Chemistry A, 2020, 8, 15658-15664. | 5.2  | 25        |
| 38 | Norbornadiene photoswitches anchored to well-defined oxide surfaces: From ultrahigh vacuum into the liquid and the electrochemical environment. Journal of Chemical Physics, 2020, 152, 044708.                                      | 1.2  | 18        |
| 39 | Understanding Interactions Driving the Template-Directed Self-Assembly of Colloidal Nanoparticles at<br>Surfaces. Journal of Physical Chemistry C, 2020, 124, 4660-4667.                                                             | 1.5  | 5         |
| 40 | A Memristive Element Based on an Electrically Controlled Singleâ€Molecule Reaction. Angewandte<br>Chemie, 2020, 132, 11738-11743.                                                                                                    | 1.6  | 5         |
| 41 | Macroscopic heat release in a molecular solar thermal energy storage system. Energy and Environmental Science, 2019, 12, 187-193.                                                                                                    | 15.6 | 120       |
| 42 | Ionic liquid based battery electrolytes using lithium and sodium pseudo-delocalized pyridinium anion salts. Physical Chemistry Chemical Physics, 2019, 21, 18393-18399.                                                              | 1.3  | 2         |
| 43 | Water-in-Bisalt Electrolyte with Record Salt Concentration and Widened Electrochemical Stability<br>Window. Journal of Physical Chemistry Letters, 2019, 10, 4942-4946.                                                              | 2.1  | 29        |
| 44 | Continuous Microfluidic Synthesis of Pd Nanocubes and PdPt Core–Shell Nanoparticles and Their<br>Catalysis of NO <sub>2</sub> Reduction. ACS Applied Materials & Interfaces, 2019, 11, 36196-36204.                                  | 4.0  | 41        |
| 45 | Norbornadiene–dihydroazulene conjugates. Organic and Biomolecular Chemistry, 2019, 17, 7735-7746.                                                                                                                                    | 1.5  | 25        |
| 46 | Intermolecular London Dispersion Interactions of Azobenzene Switches for Tuning Molecular Solar<br>Thermal Energy Storage Systems. ChemPlusChem, 2019, 84, 1145-1148.                                                                | 1.3  | 34        |
| 47 | Electrochemically controlled energy storage in a norbornadiene-based solar fuel with 99% reversibility. Nano Energy, 2019, 63, 103872.                                                                                               | 8.2  | 31        |
| 48 | Solvent-free lithium and sodium containing electrolytes based on pseudo-delocalized anions.<br>Chemical Communications, 2019, 55, 632-635.                                                                                           | 2.2  | 9         |
| 49 | Dithiafulvene derivatized donor–acceptor norbornadienes with redshifted absorption. Physical<br>Chemistry Chemical Physics, 2019, 21, 3092-3097.                                                                                     | 1.3  | 13        |
| 50 | Solar energy storage at an atomically defined organic-oxide hybrid interface. Nature Communications, 2019, 10, 2384.                                                                                                                 | 5.8  | 37        |
| 51 | Demonstration of an azobenzene derivative based solar thermal energy storage system. Journal of<br>Materials Chemistry A, 2019, 7, 15042-15047.                                                                                      | 5.2  | 75        |
| 52 | Solar Energy Storage by Molecular Norbornadiene–Quadricyclane Photoswitches: Polymer Film<br>Devices. Advanced Science, 2019, 6, 1900367.                                                                                            | 5.6  | 45        |
| 53 | Tuning Molecular Solar Thermal Properties by Modification of a Promising Norbornadiene<br>Photoswitch. European Journal of Organic Chemistry, 2019, 2019, 2354-2361.                                                                 | 1.2  | 10        |
| 54 | Solvent Effects on the Absorption Profile, Kinetic Stability, and Photoisomerization Process of the<br>Norbornadiene–Quadricyclanes System. Journal of Physical Chemistry C, 2019, 123, 7081-7087.                                   | 1.5  | 27        |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | From Single Molecules to Thin Film Electronics, Nanofibers, eâ€Textiles and Power Cables: Bridging<br>Length Scales with Organic Semiconductors. Advanced Materials, 2019, 31, e1807286.                                         | 11.1 | 20        |
| 56 | Towards efficient solid-state triplet–triplet annihilation based photon upconversion:<br>Supramolecular, macromolecular and self-assembled systems. Coordination Chemistry Reviews, 2018,<br>362, 54-71.                         | 9.5  | 201       |
| 57 | Release of Terminal Alkynes via Tandem Photodeprotection and Decarboxylation of o-Nitrobenzyl<br>Arylpropiolates in a Flow Microchannel Reactor. Bioconjugate Chemistry, 2018, 29, 1178-1185.                                    | 1.8  | 5         |
| 58 | Liquid Norbornadiene Photoswitches for Solar Energy Storage. Advanced Energy Materials, 2018, 8,<br>1703401.                                                                                                                     | 10.2 | 61        |
| 59 | Singlet and triplet energy transfer dynamics in self-assembled axial porphyrin–anthracene complexes:<br>towards supra-molecular structures for photon upconversion. Physical Chemistry Chemical Physics,<br>2018, 20, 7549-7558. | 1.3  | 23        |
| 60 | A gold-nanoparticle stoppered [2]rotaxane. Nanoscale, 2018, 10, 9133-9140.                                                                                                                                                       | 2.8  | 9         |
| 61 | Probing variable range hopping lengths by magneto conductance in carbonized polymer nanofibers.<br>Scientific Reports, 2018, 8, 4948.                                                                                            | 1.6  | 7         |
| 62 | Molecular Solar-Thermal Energy Storage: Molecular Design and Functional Devices. Green Chemistry and Sustainable Technology, 2018, , 327-352.                                                                                    | 0.4  | 11        |
| 63 | Nanoelectrode Gaps: Parallel Fabrication of Selfâ€Assembled Nanogaps for Molecular Electronic<br>Devices (Small 50/2018). Small, 2018, 14, 1870243.                                                                              | 5.2  | 1         |
| 64 | Uniform doping of graphene close to the Dirac point by polymer-assisted assembly of molecular dopants. Nature Communications, 2018, 9, 3956.                                                                                     | 5.8  | 61        |
| 65 | Three-Input Molecular Keypad Lock Based on a Norbornadiene–Quadricyclane Photoswitch. Journal of<br>Physical Chemistry Letters, 2018, 9, 6174-6178.                                                                              | 2.1  | 23        |
| 66 | Parallel Fabrication of Selfâ€Assembled Nanogaps for Molecular Electronic Devices. Small, 2018, 14,<br>1803471.                                                                                                                  | 5.2  | 9         |
| 67 | Triazoleâ€Functionalized Norbornadieneâ€Quadricyclane Photoswitches for Solar Energy Storage.<br>European Journal of Organic Chemistry, 2018, 2018, 4465-4474.                                                                   | 1.2  | 6         |
| 68 | Molecular solar thermal energy storage in photoswitch oligomers increases energy densities and storage times. Nature Communications, 2018, 9, 1945.                                                                              | 5.8  | 104       |
| 69 | Norbornadieneâ€Based Photoswitches with Exceptional Combination of Solar Spectrum Match and<br>Longâ€Term Energy Storage. Chemistry - A European Journal, 2018, 24, 12767-12772.                                                 | 1.7  | 67        |
| 70 | Heteroaryl-linked norbornadiene dimers with redshifted absorptions. Organic and Biomolecular<br>Chemistry, 2018, 16, 5585-5590.                                                                                                  | 1.5  | 27        |
| 71 | Turn-off mode fluorescent norbornadiene-based photoswitches. Physical Chemistry Chemical Physics, 2018, 20, 23195-23201.                                                                                                         | 1.3  | 17        |
| 72 | Reconfigurable Carbon Nanotube Multiplexed Sensing Devices. Nano Letters, 2018, 18, 4130-4135.                                                                                                                                   | 4.5  | 52        |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Heterogeneity in the fluorescence of graphene and graphene oxide quantum dots. Mikrochimica Acta, 2017, 184, 871-878.                                                                           | 2.5  | 47        |
| 74 | CdS/ZnS core–shell nanocrystal photosensitizers for visible to UV upconversion. Chemical Science, 2017, 8, 5488-5496.                                                                           | 3.7  | 98        |
| 75 | Unraveling factors leading to efficient norbornadiene–quadricyclane molecular solar-thermal<br>energy storage systems. Journal of Materials Chemistry A, 2017, 5, 12369-12378.                  | 5.2  | 65        |
| 76 | Loss channels in triplet–triplet annihilation photon upconversion: importance of annihilator singlet<br>and triplet surface shapes. Physical Chemistry Chemical Physics, 2017, 19, 10931-10939. | 1.3  | 98        |
| 77 | Effect of Ring Strain on the Charge Transport of a Robust Norbornadiene–Quadricyclane-Based<br>Molecular Photoswitch. Journal of Physical Chemistry C, 2017, 121, 7094-7100.                    | 1.5  | 42        |
| 78 | FRET enhancement close to gold nanoparticles positioned in DNA origami constructs. Nanoscale, 2017,<br>9, 673-683.                                                                              | 2.8  | 59        |
| 79 | Synthesis of Cu Nanoparticles: Stability and Conversion into Cu2S Nanoparticles by Decomposition of Alkanethiolate. Langmuir, 2017, 33, 13272-13276.                                            | 1.6  | 8         |
| 80 | Guided selective deposition of nanoparticles by tuning of the surface potential. Europhysics Letters, 2017, 119, 18004.                                                                         | 0.7  | 3         |
| 81 | Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications.<br>ChemSusChem, 2017, 10, 3000-3000.                                                           | 3.6  | 2         |
| 82 | Robust triplet–triplet annihilation photon upconversion by efficient oxygen scavenging.<br>Photochemical and Photobiological Sciences, 2017, 16, 1327-1334.                                     | 1.6  | 50        |
| 83 | Evaluating Dihydroazulene/Vinylheptafulvene Photoswitches for Solar Energy Storage Applications.<br>ChemSusChem, 2017, 10, 3049-3055.                                                           | 3.6  | 67        |
| 84 | Exploring the potential of a hybrid device combining solar water heating and molecular solar thermal energy storage. Energy and Environmental Science, 2017, 10, 728-734.                       | 15.6 | 106       |
| 85 | Optimization of Norbornadiene Compounds for Solar Thermal Storage by Firstâ€Principles<br>Calculations. ChemSusChem, 2016, 9, 1786-1794.                                                        | 3.6  | 38        |
| 86 | Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles<br>Calculations. ChemSusChem, 2016, 9, 1745-1745.                                                         | 3.6  | 2         |
| 87 | Apparent Power Law Scaling of Variable Range Hopping Conduction in Carbonized Polymer Nanofibers.<br>Scientific Reports, 2016, 6, 37783.                                                        | 1.6  | 8         |
| 88 | Comparative Ab-Initio Study of Substituted Norbornadiene-Quadricyclane Compounds for Solar<br>Thermal Storage. Journal of Physical Chemistry C, 2016, 120, 3635-3645.                           | 1.5  | 71        |
| 89 | Tuning the photochemical properties of the fulvalene-tetracarbonyl-diruthenium system. Dalton<br>Transactions, 2016, 45, 8740-8744.                                                             | 1.6  | 37        |
| 90 | Intramolecular Triplet–Triplet Annihilation Upconversion in 9,10-Diphenylanthracene Oligomers and Dendrimers. Journal of Physical Chemistry C, 2016, 120, 23397-23406.                          | 1.5  | 56        |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Low Molecular Weight Norbornadiene Derivatives for Molecular Solarâ€Thermal Energy Storage.<br>Chemistry - A European Journal, 2016, 22, 13265-13274.                                                                             | 1.7  | 107       |
| 92  | Porphyrin–Anthracene Complexes: Potential in Triplet–Triplet Annihilation Upconversion. Journal of<br>Physical Chemistry C, 2016, 120, 19018-19026.                                                                               | 1.5  | 49        |
| 93  | Fluorine-free salts for aqueous lithium-ion and sodium-ion battery electrolytes. RSC Advances, 2016, 6, 85194-85201.                                                                                                              | 1.7  | 15        |
| 94  | Controlling deposition of nanoparticles by tuning surface charge of SiO <sub>2</sub> by surface modifications. RSC Advances, 2016, 6, 104246-104253.                                                                              | 1.7  | 30        |
| 95  | Photon upconversion with directed emission. Nature Communications, 2016, 7, 12689.                                                                                                                                                | 5.8  | 40        |
| 96  | Understanding the Phase Diagram of Self-Assembled Monolayers of Alkanethiolates on Gold. Journal of Physical Chemistry C, 2016, 120, 12059-12067.                                                                                 | 1.5  | 27        |
| 97  | Copper-coordinating polymers for marine anti-fouling coatings: A physicochemical and electrochemical study of ternary system of copper, PMMA and poly(TBTA). Progress in Organic Coatings, 2016, 97, 216-221.                     | 1.9  | 9         |
| 98  | Evaluating Conditions for Strong Coupling between Nanoparticle Plasmons and Organic Dyes Using Scattering and Absorption Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 20588-20596.                                   | 1.5  | 58        |
| 99  | Designing photoswitches for molecular solar thermal energy storage. Tetrahedron Letters, 2015, 56, 1457-1465.                                                                                                                     | 0.7  | 183       |
| 100 | PROFILE: Early Excellence in Physical Organic Chemistry. Journal of Physical Organic Chemistry, 2015, 28, 171-171.                                                                                                                | 0.9  | 0         |
| 101 | Being two is better than one—catalytic reductions with dendrimer encapsulated copper- and copper–cobalt-subnanoparticles. Chemical Communications, 2015, 51, 9957-9960.                                                           | 2.2  | 10        |
| 102 | A Convenient Route to 2-Bromo-3-chloronorbornadiene and 2,3-Dibromonorbornadiene. Synlett, 2015, 26, 1501-1504.                                                                                                                   | 1.0  | 15        |
| 103 | Photophysical characterization of the 9,10-disubstituted anthracene chromophore and its applications in triplet–triplet annihilation photon upconversion. Journal of Materials Chemistry C, 2015, 3, 11111-11121.                 | 2.7  | 119       |
| 104 | Cu( <scp>i</scp> ) stabilizing crosslinked polyethyleneimine. Physical Chemistry Chemical Physics, 2015, 17, 18327-18336.                                                                                                         | 1.3  | 17        |
| 105 | Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals withÂdifferent size<br>and shape. Nature Materials, 2015, 14, 1236-1244.                                                                            | 13.3 | 160       |
| 106 | Monofunctionalization and Dimerization of Nanoparticles Using Coordination Chemistry. ACS Nano, 2015, 9, 1434-1439.                                                                                                               | 7.3  | 17        |
| 107 | Exploring the Potential of Fulvalene Dimetals as Platforms for Molecular Solar Thermal Energy<br>Storage: Computations, Syntheses, Structures, Kinetics, and Catalysis. Chemistry - A European Journal,<br>2014, 20, 15587-15604. | 1.7  | 35        |
| 108 | Photon up-conversion and molecular solar thermal energy storage: New materials and devices. , 2014, , .                                                                                                                           |      | 0         |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Fluorinated fulvalene ruthenium compound for molecular solar thermal applications. Journal of<br>Fluorine Chemistry, 2014, 161, 24-28.                                                                                       | 0.9  | 23        |
| 110 | Triplet–triplet annihilation photon-upconversion: towards solar energy applications. Physical<br>Chemistry Chemical Physics, 2014, 16, 10345-10352.                                                                          | 1.3  | 290       |
| 111 | Diaryl-substituted norbornadienes with red-shifted absorption for molecular solar thermal energy storage. Chemical Communications, 2014, 50, 5330-5332.                                                                      | 2.2  | 96        |
| 112 | Anisotropic growth of gold nanoparticles using cationic gemini surfactants: effects of structure variations in head and tail groups. Journal of Materials Chemistry C, 2014, 2, 994-1003.                                    | 2.7  | 39        |
| 113 | Conjugated anthracene dendrimers with monomer-like fluorescence. RSC Advances, 2014, 4, 19846-19850.                                                                                                                         | 1.7  | 6         |
| 114 | The conquest of middle-earth: combining top-down and bottom-up nanofabrication for constructing nanoparticle based devices. Nanoscale, 2014, 6, 14605-14616.                                                                 | 2.8  | 33        |
| 115 | Single-molecule electronics: from chemical design to functional devices. Chemical Society Reviews, 2014, 43, 7378-7411.                                                                                                      | 18.7 | 433       |
| 116 | Additional Article Notification: Anisotropic growth of gold nanoparticles using cationic gemini<br>surfactants: effects of structure variations in head and tail groups. Journal of Materials Chemistry C,<br>2014, 2, 3476. | 2.7  | 0         |
| 117 | Research Update: Progress in synthesis of nanoparticle dimers by self-assembly. APL Materials, 2014, 2, .                                                                                                                    | 2.2  | 22        |
| 118 | A Versatile Self-Assembly Strategy for the Synthesis of Shape-Selected Colloidal Noble Metal<br>Nanoparticle Heterodimers. Langmuir, 2014, 30, 3041-3050.                                                                    | 1.6  | 73        |
| 119 | One-pot synthesis of TBTA-functionalized coordinating polymers. Reactive and Functional Polymers, 2014, 82, 1-8.                                                                                                             | 2.0  | 11        |
| 120 | A photolabile protection strategy for terminal alkynes. Tetrahedron Letters, 2013, 54, 5426-5429.                                                                                                                            | 0.7  | 10        |
| 121 | Toward Plasmonic Biosensors Functionalized by a Photoinduced Surface Reaction. Journal of Physical Chemistry C, 2013, 117, 14751-14758.                                                                                      | 1.5  | 8         |
| 122 | Photon upconversion facilitated molecular solar energy storage. Journal of Materials Chemistry A, 2013, 1, 8521.                                                                                                             | 5.2  | 124       |
| 123 | Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex. Nature Communications, 2013, 4, 2121.                                                                        | 5.8  | 43        |
| 124 | Deterministic assembly of linear gold nanorod chains as a platform for nanoscale applications.<br>Nanoscale, 2013, 5, 8680.                                                                                                  | 2.8  | 36        |
| 125 | Quantum interference effects at room temperature in OPV-based single-molecule junctions. Nanoscale<br>Research Letters, 2013, 8, 234.                                                                                        | 3.1  | 48        |
| 126 | Progress in self-assembled single-molecule electronic devices. Journal of Materials Chemistry C, 2013, 1, 7127.                                                                                                              | 2.7  | 33        |

| #   | Article                                                                                                                                                                                                                    | IF    | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 127 | Efficiency Limit of Molecular Solar Thermal Energy Collecting Devices. ACS Sustainable Chemistry and Engineering, 2013, 1, 585-590.                                                                                        | 3.2   | 90        |
| 128 | Aligned Growth of Gold Nanorods in PMMA Channels: Parallel Preparation of Nanogaps. ACS Nano, 2012, 6, 3861-3867.                                                                                                          | 7.3   | 19        |
| 129 | Molecular solar thermal (MOST) energy storage and release system. Energy and Environmental Science, 2012, 5, 8534.                                                                                                         | 15.6  | 171       |
| 130 | Xâ€ray Transient Absorption and Picosecond IR Spectroscopy of Fulvalene(tetracarbonyl)diruthenium<br>on Photoexcitation. Angewandte Chemie - International Edition, 2012, 51, 7692-7696.                                   | 7.2   | 47        |
| 131 | Monitoring the Aggregation of Single Casein Micelles Using Fluorescence Microscopy. Langmuir, 2011, 27, 866-869.                                                                                                           | 1.6   | 9         |
| 132 | Voltammetry and in situscanning tunnelling spectroscopy of osmium, iron, and ruthenium complexes<br>of 2,2′:6′,2′′-terpyridine covalently linked to Au(111)-electrodes. Physical Chemistry Chemical Physics,<br>13, 14394. | 2011, | 17        |
| 133 | Nonâ€Volatile Photochemical Gating of an Epitaxial Graphene/Polymer Heterostructure. Advanced<br>Materials, 2011, 23, 878-882.                                                                                             | 11.1  | 130       |
| 134 | Engineering and metrology of epitaxial graphene. Solid State Communications, 2011, 151, 1094-1099.                                                                                                                         | 0.9   | 23        |
| 135 | From Nanofabrication to Self-fabrication – Tailored Chemistry for Control of Single Molecule<br>Electronic Devices. Chimia, 2010, 64, 404.                                                                                 | 0.3   | 5         |
| 136 | Gold nanorods employed in a self-assembly strategy for single molecule electronics. , 2010, , .                                                                                                                            |       | 0         |
| 137 | Electrical Manipulation of Spin States in a Single Electrostatically Gated Transition-Metal Complex.<br>Nano Letters, 2010, 10, 105-110.                                                                                   | 4.5   | 157       |
| 138 | Solution-Based Fabrication of Single-Crystalline Arrays of Organic Nanowires. Langmuir, 2010, 26, 1130-1136.                                                                                                               | 1.6   | 50        |
| 139 | First Step in Chemical Preparation of Metal Nanogaps Bridged by Thiol End-Capped Molecular Wires.<br>Journal of Physical Chemistry B, 2010, 114, 11771-11777.                                                              | 1.2   | 9         |
| 140 | Optically Induced Linking of Protein and Nanoparticles to Gold Surfaces. Bioconjugate Chemistry, 2010, 21, 1056-1061.                                                                                                      | 1.8   | 6         |
| 141 | Self-assembled nanogaps for molecular electronics. Nanotechnology, 2009, 20, 245205.                                                                                                                                       | 1.3   | 18        |
| 142 | Bis[S-6-(2,2:6′,2′′-terpyridin-4′-yloxy)hexyl thioacetate]manganese(II) bis(hexafluorophosphate). Acta<br>Crystallographica Section C: Crystal Structure Communications, 2009, 65, m14-m16.                                | 0.4   | 1         |
| 143 | Molecular electronics with single molecules in solid-state devices. Nature Nanotechnology, 2009, 4, 551-556.                                                                                                               | 15.6  | 356       |
| 144 | Self-Assembled Nanogaps via Seed-Mediated Growth of End-to-End Linked Gold Nanorods. ACS Nano, 2009, 3, 828-834.                                                                                                           | 7.3   | 54        |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Electronic Transport in Single Molecule Junctions:  Control of the Molecule-Electrode Coupling<br>through Intramolecular Tunneling Barriers. Nano Letters, 2008, 8, 1-5.                             | 4.5 | 163       |
| 146 | Chiral dendrimer encapsulated Pd and Rh nanoparticles. Chemical Communications, 2008, , 2358.                                                                                                        | 2.2 | 25        |
| 147 | Polymer-Templated Self-Assembly of a 2-Dimensional Gold Nanoparticle Network. Langmuir, 2008, 24, 3905-3910.                                                                                         | 1.6 | 42        |
| 148 | Voltammetry and Electrocatalysis of Achromobacter Xylosoxidans Copper Nitrite Reductase on<br>Functionalized Au(111)-Electrode Surfaces. Zeitschrift Fur Physikalische Chemie, 2007, 221, 1343-1378. | 1.4 | 19        |
| 149 | Scanning Tunneling Spectroscopy in an Ionic Liquid. Journal of the American Chemical Society, 2006, 128, 6574-6575.                                                                                  | 6.6 | 92        |
| 150 | In situscanning tunnelling spectroscopy of inorganic transition metal complexes. Faraday Discussions, 2006, 131, 265-279.                                                                            | 1.6 | 97        |
| 151 | Synthetic protocols and building blocks for molecular electronics. Tetrahedron, 2005, 61, 12288-12295.                                                                                               | 1.0 | 39        |
| 152 | Probing the Effects of Conjugation Path on the Electronic Transmission through Single Molecules<br>Using Scanning Tunneling Microscopy. Nano Letters, 2005, 5, 783-785.                              | 4.5 | 74        |
| 153 | Self-Assembly and Conductive Properties of Molecularly Linked Gold Nanowires. Nano Letters, 2004, 4, 19-22.                                                                                          | 4.5 | 70        |
| 154 | Microwave Assisted Condensation of Aromatic Methyl Groups with Aromatic Aldehydes. Synthetic Communications, 2004, 34, 2215-2221.                                                                    | 1.1 | 1         |
| 155 | Poly(amidoamine)-Dendrimer-Stabilized Pd(0) Nanoparticles as a Catalyst for the Suzuki Reaction.<br>Langmuir, 2003, 19, 7682-7684.                                                                   | 1.6 | 156       |