Xin Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9104719/publications.pdf

Version: 2024-02-01

687363 752698 21 639 13 20 citations h-index g-index papers 21 21 21 669 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Insights into Flow Improving for Waxy Crude Oil Doped with EVA/SiO ₂ Nanohybrids. ACS Omega, 2022, 7, 5853-5863.	3.5	8
2	Selective potassium uptake via biocompatible zeolite–polymer hybrid microbeads as promising binders for hyperkalemia. Bioactive Materials, 2021, 6, 543-558.	15.6	9
3	Transient blood thinning during extracorporeal blood purification via the inactivation of coagulation factors by hydrogel microspheres. Nature Biomedical Engineering, 2021, 5, 1143-1156.	22.5	54
4	Construction of dual-carbon-confined metal sulfide nanocrystals <i>via</i> bio-mimetic reactors enabling superior Fenton-like catalysis. Journal of Materials Chemistry A, 2021, 9, 22994-23010.	10.3	12
5	Hemocompatibility enhancement of polyethersulfone membranes: Strategies and challenges. , 2021, 1, 100013.		11
6	Precipitated droplets in-situ cross-linking polymerization towards hydrogel beads for ultrahigh removal of positively charged toxins. Separation and Purification Technology, 2020, 238, 116497.	7.9	19
7	Urease immobilized GO core@shell heparin-mimicking polymer beads with safe and effective urea removal for blood purification. International Journal of Biological Macromolecules, 2020, 156, 1503-1511.	7.5	10
8	Precipitated droplets in-situ cross-linking polymerization and its applications. Polymer Testing, 2020, 91, 106756.	4.8	6
9	Anticoagulant chitosan-kappa-carrageenan composite hydrogel sorbent for simultaneous endotoxin and bacteria cleansing in septic blood. Carbohydrate Polymers, 2020, 243, 116470.	10.2	37
10	Biocompatible In Situ Polymerization of Multipurpose Polyacrylamide-Based Hydrogels on Skin via Silver Ion Catalyzation. ACS Applied Materials & Silver Ion Catalyzation. ACS Applied Materials & Silver Ion Catalyzation.	8.0	36
11	Self-Anticoagulant Nanocomposite Spheres for the Removal of Bilirubin from Whole Blood: A Step toward a Wearable Artificial Liver. Biomacromolecules, 2020, 21, 1762-1775.	5.4	38
12	A bioinspired strategy towards super-adsorbent hydrogel spheres <i>via</i> self-sacrificing micro-reactors for robust wastewater remediation. Journal of Materials Chemistry A, 2019, 7, 21386-21403.	10.3	46
13	Semi-interpenetrating polymer network microspheres with superior dimensional stability as multifunctional antibacterial adsorbent materials. Journal of Environmental Chemical Engineering, 2019, 7, 103393.	6.7	10
14	Three-Dimensional Graphene Oxide Skeleton Guided Poly(acrylic Acid) Composite Hydrogel Particles with Hierarchical Pore Structure for Hemoperfusion. ACS Biomaterials Science and Engineering, 2019, 5, 3987-4001.	5.2	16
15	Surface engineering of low-fouling and hemocompatible polyethersulfone membranes via in-situ ring-openingâ€,reaction. Journal of Membrane Science, 2019, 581, 373-382.	8.2	36
16	Reinforced-Concrete Structured Hydrogel Microspheres with Ultrahigh Mechanical Strength, Restricted Water Uptake, and Superior Adsorption Capacity. ACS Sustainable Chemistry and Engineering, 2018, 6, 5950-5958.	6.7	43
17	Design of Carrageenan-Based Heparin-Mimetic Gel Beads as Self-Anticoagulant Hemoperfusion Adsorbents. Biomacromolecules, 2018, 19, 1966-1978.	5.4	70
18	Root-soil structure inspired hydrogel microspheres with high dimensional stability and anion-exchange capacity. Journal of Colloid and Interface Science, 2018, 532, 680-688.	9.4	13

XIN SONG

#	Article	IF	CITATION
19	Mussel-inspired chitosan-polyurethane coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes. Carbohydrate Polymers, 2017, 168, 310-319.	10.2	62
20	A facile approach towards amino-coated polyethersulfone particles for the removal of toxins. Journal of Colloid and Interface Science, 2017, 485, 39-50.	9.4	49
21	Effect of SiO ₂ Nanoparticles on Wax Crystallization and Flow Behavior of Model Crude Oil. Industrial & Dil. I	3.7	54