
## **Christopher P Weaver**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9104044/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Urban adaptation can roll back warming of emerging megapolitan regions. Proceedings of the<br>National Academy of Sciences of the United States of America, 2014, 111, 2909-2914.                                                           | 7.1  | 392       |
| 2  | Key ecological responses to nitrogen are altered by climate change. Nature Climate Change, 2016, 6,<br>836-843.                                                                                                                             | 18.8 | 261       |
| 3  | Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks. Wiley Interdisciplinary Reviews: Climate Change, 2013, 4, 39-60.                                           | 8.1  | 250       |
| 4  | Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. Journal of Geophysical Research, 2007, 112, .                                                                  | 3.3  | 227       |
| 5  | A Preliminary Synthesis of Modeled Climate Change Impacts on U.S. Regional Ozone Concentrations.<br>Bulletin of the American Meteorological Society, 2009, 90, 1843-1864.                                                                   | 3.3  | 175       |
| 6  | Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation. Journal of Geophysical Research, 2007, 112, .                                                                             | 3.3  | 164       |
| 7  | Atmospheric Disturbances Caused by Human Modification of the Landscape. Bulletin of the American<br>Meteorological Society, 2001, 82, 269-281.                                                                                              | 3.3  | 160       |
| 8  | Incorporating water table dynamics in climate modeling: 3. Simulated groundwater influence on<br>coupled landâ€atmosphere variability. Journal of Geophysical Research, 2008, 113, .                                                        | 3.3  | 125       |
| 9  | From global change science to action with social sciences. Nature Climate Change, 2014, 4, 656-659.                                                                                                                                         | 18.8 | 95        |
| 10 | Understanding the Meteorological Drivers of U.S. Particulate Matter Concentrations in a Changing Climate. Bulletin of the American Meteorological Society, 2014, 95, 521-532.                                                               | 3.3  | 92        |
| 11 | Improved Techniques for Evaluating GCM Cloudiness Applied to the NCAR CCM3. Journal of Climate, 2001, 14, 2540-2550.                                                                                                                        | 3.2  | 85        |
| 12 | Variation in Estimated Ozone-Related Health Impacts of Climate Change due to Modeling Choices and<br>Assumptions. Environmental Health Perspectives, 2012, 120, 1559-1564.                                                                  | 6.0  | 74        |
| 13 | A Framework for Assessing Climate Change Impacts on Water and Watershed Systems. Environmental<br>Management, 2009, 43, 118-134.                                                                                                            | 2.7  | 57        |
| 14 | Cluster analysis of cloud regimes and characteristic dynamics of midlatitude synoptic systems in observations and a model. Journal of Geophysical Research, 2005, 110, .                                                                    | 3.3  | 56        |
| 15 | Investigating the Sensitivity of U.S. Streamflow and Water Quality to Climate Change: U.S. EPA Global<br>Change Research Program's 20 Watersheds Project. Journal of Water Resources Planning and<br>Management - ASCE, 2012, 138, 453-464. | 2.6  | 48        |
| 16 | Deductions from a simple climate model: Factors governing surface temperature and atmospheric thermal structure. Journal of Geophysical Research, 1995, 100, 11585.                                                                         | 3.3  | 47        |
| 17 | Impact of historical land cover change on the July climate of the United States. Journal of Geophysical<br>Research, 2003, 108, n/a-n/a.                                                                                                    | 3.3  | 47        |
| 18 | Modeling Streamflow and Water Quality Sensitivity to Climate Change and Urban Development in 20<br>U.S. Watersheds, Journal of the American Water Resources Association, 2015, 51, 1321-1341                                                | 2.4  | 47        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Relationships between Large-Scale Vertical Velocity, Static Stability, and Cloud Radiative Forcing over<br>Northern Hemisphere Extratropical Oceans*. Journal of Climate, 1997, 10, 2871-2887.                                          | 3.2 | 46        |
| 20 | A preferred scale for landscape forced mesoscale circulations?. Journal of Geophysical Research, 2003, 108, .                                                                                                                           | 3.3 | 43        |
| 21 | Coupling between Large-Scale Atmospheric Processes and Mesoscale Land–Atmosphere Interactions in the U.S. Southern Great Plains during Summer. Part I: Case Studies. Journal of Hydrometeorology, 2004, 5, 1223-1246.                   | 1.9 | 43        |
| 22 | Observational Evidence that Great Plains Irrigation Has Enhanced Summer Precipitation Intensity and Totals in the Midwestern United States. Journal of Hydrometeorology, 2015, 16, 1717-1735.                                           | 1.9 | 43        |
| 23 | Sensitivity of simulated mesoscale atmospheric circulations resulting from landscape heterogeneity to aspects of model configuration. Journal of Geophysical Research, 2002, 107, LBA 8-1.                                              | 3.3 | 36        |
| 24 | Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 1. Surface<br>energy budget changes. Journal of Geophysical Research, 2009, 114, .                                                          | 3.3 | 31        |
| 25 | Reframing climate change assessments around risk: recommendations for the US National Climate Assessment. Environmental Research Letters, 2017, 12, 080201.                                                                             | 5.2 | 30        |
| 26 | Climatic effects of 30 years of landscape change over the Greater Phoenix, Arizona, region: 2.<br>Dynamical and thermodynamical response. Journal of Geophysical Research, 2009, 114, .                                                 | 3.3 | 29        |
| 27 | The Link between Summertime Cloud Radiative Forcing and Extratropical Cyclones in the North Pacific. Journal of Climate, 1996, 9, 2093-2109.                                                                                            | 3.2 | 27        |
| 28 | Coupling between Large-Scale Atmospheric Processes and Mesoscale Land–Atmosphere Interactions in the U.S. Southern Great Plains during Summer. Part II: Mean Impacts of the Mesoscale. Journal of Hydrometeorology, 2004, 5, 1247-1258. | 1.9 | 27        |
| 29 | The Effects of Downscaling Method on the Variability of Simulated Watershed Response to Climate Change in Five U.S. Basins. Earth Interactions, 2016, 20, 1-27.                                                                         | 1.5 | 24        |
| 30 | Toward a parameterization of mesoscale fluxes and moist convection induced by landscape heterogeneity. Journal of Geophysical Research, 1999, 104, 19515-19533.                                                                         | 3.3 | 23        |
| 31 | Reframing Future Risks of Extreme Heat in the United States. Earth's Future, 2018, 6, 1323-1335.                                                                                                                                        | 6.3 | 23        |
| 32 | Rising Sea Levels: Helping Decision-Makers Confront the Inevitable. Coastal Management, 2019, 47, 127-150.                                                                                                                              | 2.0 | 23        |
| 33 | Efficiency of storm tracks an important climate parameter? The role of cloud radiative forcing in poleward heat transport. Journal of Geophysical Research, 2003, 108, ACL 5-1.                                                         | 3.3 | 22        |
| 34 | Heat-Related Health Impacts under Scenarios of Climate and Population Change. International Journal of Environmental Research and Public Health, 2018, 15, 2438.                                                                        | 2.6 | 22        |
| 35 | Sensitivity of modelâ€simulated summertime precipitation over the Mississippi River Basin to the spatial distribution of initial soil moisture. Journal of Geophysical Research, 2003, 108, .                                           | 3.3 | 20        |
| 36 | Evaluating the effects of historical land cover change on summertime weather and climate in New<br>Jersey: Land cover and surface energy budget changes. Journal of Geophysical Research, 2008, 113, .                                  | 3.3 | 20        |

CHRISTOPHER P WEAVER

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Hydrologic landscape classification evaluates streamflow vulnerability to climate change in Oregon,<br>USA. Hydrology and Earth System Sciences, 2014, 18, 3367-3392.                                                                     | 4.9 | 19        |
| 38 | Informing Future Risks of Record‣evel Rainfall in the United States. Geophysical Research Letters, 2019, 46, 3963-3972.                                                                                                                   | 4.0 | 19        |
| 39 | Sensitivity of summer climate to anthropogenic land-cover change over the Greater Phoenix, AZ, region. Journal of Arid Environments, 2008, 72, 1358-1373.                                                                                 | 2.4 | 17        |
| 40 | Relationship between clear-sky atmospheric greenhouse effect and deep convection during the<br>Central Equatorial Pacific Experiment: Model calculations and satellite observations. Journal of<br>Geophysical Research, 1994, 99, 25891. | 3.3 | 15        |
| 41 | Challenges in applying the paradigm of welfare economics to climate change. Journal of Benefit-Cost<br>Analysis, 2014, 5, 347-376.                                                                                                        | 1.2 | 14        |
| 42 | The Interactions among Cyclone Dynamics, Vertical Thermodynamic Structure, and Cloud Radiative Forcing in the North Atlantic Summertime Storm Track. Journal of Climate, 1999, 12, 2625-2642.                                             | 3.2 | 10        |
| 43 | Using Multiobjective Optimization to Inform Green Infrastructure Decisions as Part of Robust<br>Integrated Water Resources Management Plans. Journal of Water Resources Planning and<br>Management - ASCE, 2021, 147, 1-12.               | 2.6 | 8         |
| 44 | A Framework for Climate Change-Related Research to Inform Environmental Protection.<br>Environmental Management, 2019, 64, 245-257.                                                                                                       | 2.7 | 7         |
| 45 | Comments on "The Effects of Mesoscale Surface Heterogeneity on the Fair-Weather Convective<br>Atmospheric Boundary Layer― Journals of the Atmospheric Sciences, 2009, 66, 3226-3228.                                                      | 1.7 | 6         |
| 46 | Determination of surface heating by convective cloud systems in the central equatorial Pacific from surface and satellite measurements. Journal of Geophysical Research, 2000, 105, 14807-14821.                                          | 3.3 | 4         |
| 47 | Dynamical controls on sub–global climate model grid-scale cloud variability for Atmospheric<br>Radiation Measurement Program (ARM) case 4. Journal of Geophysical Research, 2005, 110, .                                                  | 3.3 | 4         |
| 48 | Treading Water: Tools to Help US Coastal Communities Plan for Sea Level Rise Impacts. Frontiers in<br>Marine Science, 2019, 6, .                                                                                                          | 2.5 | 4         |
| 49 | Introduction to a special issue entitled Perspectives on Implementing Benefit-Cost Analysis in Climate<br>Assessment. Journal of Benefit-Cost Analysis, 2014, 5, 333-346.                                                                 | 1.2 | 4         |
| 50 | Assessing confidence in management adaptation approaches for climate-sensitive ecosystems.<br>Environmental Research Letters, 2012, 7, 014016.                                                                                            | 5.2 | 3         |
| 51 | ESTIMATES OF CHANGES IN COUNTY-LEVEL HOUSING PRICES IN THE UNITED STATES UNDER SCENARIOS OF FUTURE CLIMATE CHANGE. Climate Change Economics, 2014, 05, 1450009.                                                                           | 5.0 | 2         |
| 52 | Using hydrologic landscape classification and climatic time series to assess hydrologic vulnerability of the western U.S. to climate. Hydrology and Earth System Sciences, 2021, 25, 3179-3206.                                           | 4.9 | 2         |
| 53 | Stochastic Radiative Transfer on Modeled Cloud Fields. IEEE Geoscience and Remote Sensing Letters, 2009, 6, 184-188.                                                                                                                      | 3.1 | 1         |